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1 Econometrics

1.1 Probability foundations
Basic set theory (ces 1.1.4) All sets A, B, C satisfy:

1. Commutativity: AUB=BUA and ANB = BNA;

2. Associativity: AU(BUC) = (AUB)UC and AN(BN
C)=(ANB)NC;

3. Distributive laws: AN(BUC) = (ANB)U(ANC) and
AU(BNC)=(AUB)N(AUC);

4. DeMorgan’s Laws: (AUB)¢ = A°N B¢ and (ANB)¢ =
AU BC.

Disjointness (c«B 1.1.5) Two events are disjoint (a.k.a. mutually
exclusive) iff ANB = @. Events {A;} are pairwise disjoint or
mutually exclusive iff A; N A; = @ for all i # j. Two events
with nonzero probability cannot be both mutually exclusive
and independent (see ex. 1.39).

Partition (c&B 1.1.6) A1, Ag,... is a partition of S iff:

1. S =, Ai (i-e., covering);

2. A1, Ag,... are pairwise disjoint (i.e., non-overlapping).

Sigma algebra (cgB 1.2.1) Collection of subsets of S (i.e., a subset
of the power set of S) is a sigma algebra, denoted B iff:

1. o €B;

2.1f A € B, then A € B (closed under
complementation—along with first axiom gives S € B);

3. If {A;} C B, then |J; A; € B (closed under countable
unions).

A cdf completely determines the probability distribution of
a random variable if its probability function is defined only
for events in the Borel field B!, the smallest sigma algebra
containing all the intervals of real numbers of the form (a, b),
la,b), (a,b], [a,b]. If probabilities are defined for a larger class
of events, two random variables may have the same cdf but
not the same probability for every event (see C&B p. 33).

Probability function (c&B 1.2.4, 8-9, 11) Given a sample space S
and associated sigma algebra B, a function P: B — R is a
probability function iff it satisfies the Kolmogorov Axioms
or Axioms of Probability:

1. P(A) >0 for all A € B;
1

2. P(S)=1;

3. If {A;} C B are pairwise disjoint, then P(|J, A;) =
> P(A;) (countable additivity for pairwise disjoint
sets).

For any probability function P and A, B € B,

1. P(@) =0;

2. P(A)<1;

3. P(A%) =1 - P(A);
4.

P(BNA%) = P(B)— P(ANB) (B but not A is B minus
both A and B);

5. P(AUB) = P(A)+ P(B) — P(AN B);
6. If A C B, then P(A) < P(B).
If {C;} partitions A, then P(A) =3, P(ANC;).
Probability space (Hansen 1-31, 1-28) (2, F, P) where:
1. Q is the universe (e.g., S, the sample space);

2. F is the o-field (e.g., BY);

3. P a probability measure (e.g., P, the probability mea-
sure that governs all random variables).

A random variable X induces a probability measure Px de-
fined by Px(B) = P(X € B) = P(F). This gives the prob-
ability space (R, B, Px).

Counting (c&B sec. 1.2.3) The number of possible arrangement of
size r from n objects is

With replacement

No replacement
n! T

Ordered eyt n
n—r)!
Unordered (:f) (n+:_ 1)
where (:‘) = #Lr), (Unordered with replacement, a.k.a.

“stars and bars.”)
Conditional probability (c&B 1.3.2, ex. 1.38) For A, B € S with

P(B) > 0, the conditional probability of A given B is
P(A|B) = P(AN B)/P(B).

4

1. If A and B are disjoint (AN B = @), then P(A|B) =
P(B|A) =0.

2. If P(B) = 1, then VA, P(A|B) = P(A).
3. If A C B, then P(B|A) = 1 and P(A|B) = P(A)/P(B).

4. If A and B are mutually exclusive, P(A|[A U B) =
P(A)/[P(A) + P(B)].

5. PLANBNC) = P(A|[BNC) - P(B|C) - P(C).

Bayes’ Rule (c&B 1.3.5) A formula for “turning around” condi-
tional probabilities: P(A|B) = P(B|A) - P(A)/P(B). More
generally, if {A;} partition the sample space and B is any
set, then Vi,

_ _ P(BJA) - P(As)
PAIB) = b (B14) - Ay

Independence of events (c&B 1.3.7, 9, 4.2.10) A, B statistically
independent iff P(AN B) = P(A) - P(B) or identically iff
P(A|B) = P(A) (this happens iff P(B|A) = P(B)).

1. Iff A and B are independent, then the following pairs
are also independent: A and BC, AC and B, AC and
BC.

2. Two events with nonzero probability cannot be both
mutually exclusive and independent (see ex. 1.39).

3. If X, Y independent r.v.s, then for any A, B C R,
events {X € A} and {Y € B} are independent events.

Mutual independence of events (c&B 1.3.12) A collection of
events {A;} are mutually independent iff for any subcollec-
tion A;,,..., A;, we have P(N; Ai;) = [I; P(As;). Note
that pairwise independence does not imply mutual indepen-
dence.



1.2 Random variables

Random variable (1.4.1, 1.5.7-8, 10, sec. 3.2) A function X: S — R
where S is a sample space.

1. Continuous iff its cdf is a continuous function and dis-
crete iff its cdf is a step function (i.e., if sample space
is countable).

2. Identically distributed iff VA € B!, P(X € A) = P(Y €
A), or identically iff Vz, Fx(z) = Fy ().

3. Note identical
(in)dependence.

distribution says nothing about

Random vector (c&B 4.1.1) n-dimensional random vector is a
function X: S — R"™ where S is a sample space.

Measurability (Hansen 1-28, 4-11) A r.v. X: (Q,F) — (R, B) is F-
measurable iff VB € B, {w € Q: X(w) € B} € F (i.e., the
preimage of every element of B is an element of F).

If 7 and G are both o-fields with G C F, then X is G-
measurable = X is F-measurable (i.e., if the preimage of
every B is in G, it is also in its superset F).

Smallest o-field (Hansen 4-12) The smallest o-field that makes a
rv. Z: (Q,F) = (R,B) measurableis o(Z) = {G C Q: 3B €
B, G = Z71(B)} (i.e., the set of preimages of elements of
B).

Independence of r.v.s (c&B 4.2.5, 7, p. 154, 4.3.5) X and Y inde-
pendent r.v.s (written X L Y) iff any of the following equiv-
alent conditions hold:

1. VA, B,P(X €A, Y € B) = P(X € A)- P(Y € B).
2. Fxy(z,y) = P(X <z,Y <y) = Fx(z)Fy (y).

3. f(z,y) = fx(z)fy (y) (i-e., joint pdf/pmf is the product
of marginal pdfs/pmfs).

4. f(ylz) = fy(y) (i-e., conditional pdf/pmf equals
marginal pdf/pmf).

5. 3g(z), h(y), vz, y, f(z,y) = g(z)h(y) (i.e., joint
pdf/pmf is separable). Note that functional forms may
appear separable, but limits may still depend on the
other variable; if the support set of (X,Y) is not a cross
product, then X and Y are not independent.

For any functions g(¢) and h(t), X L Y = g(X) L h(Y).

Independence of random vectors (c«B 4.6.5) X1,..., X, mu-
tually independent iff for every (xi,...,Xn), the joint
pdf/pmf is the product of the marginal pdfs/pmfs; i.e.,
f(x1,...,xn) =11 fx,; (%i)-

1. Knowledge about the values of some coordinates gives
us no information about the values of the other coordi-
nates.

2. The conditional distribution of any subset of the coor-
dinates, given the values of the rest of the coordinates,
is the same as the marginal distribution of the subset.

3. Mutual independence implies pairwise independence,
but pairwise independence does not imply mutual in-
dependence.

Mean independence (Metrics P.S. 3-4c, Metrics section) X 1S mean
independent of Y (written X 1,Y) iff E(X|Y) = E(X).

1. Mean independence is not transitive (i.e., X LmY does
not imply that Y Ly X).

2. Independence implies mean independence (i.e., X L
Y = X 1Y AY LnX).

3. X 1Y = E[X]g(Y)] = E[X], for any function
9()-
4. X 1Y = Cov(X,g(Y)) =0 for any function g(-).
Cumulative distribution function (ce&B 151, 3, p.  147)

Fx(z) = P(X < z). By the Fundamental Theorem of
Calculus, %FX () = fx(z) for a continuous r.v. at conti-
nuity points of fx. A function F' is a cdf iff:

1. limg—s oo F(z) =0 and limg 0 F(x) = 1;

2. F(-) nondecreasing;

3. F(-) right-continuous; i.e., Vo, limg 5, F(x) = F(xo).
A random vector X has joint cdf Fx (z1,...,zn) = P(X1 <
Z1,...,Xn < @n). By the Fundamental Theorem of Calcu-
lus, mFx (Z) = fx (&) for a continuous (in all dimen-
sions) random vector at continuity points of fx.

Probability mass function (c&B1.6.1,5, 4.1.3) For a discrete r.v.,

fx(z) = P(X =z). A function fx is a pmf iff:

L.V, fx(x) > 0;

2. >, fx(z)=1.
fx gives the probability of any event:
>k L, ey fx (zk)-

A discrete random vector X has joint pmf fx (¥)
v).

P(X € B) =

P(X =

Marginal pmf (c&B 4.1.6, p. 178) For a discrete random vector,

>

z_;eRn—1

Ifx;(x)) = P(Xs =) = Ix(z);

i.e., hold X; = z;, and sum fx over all remaining possible
values of X.

We can also take the marginal pmf for multiple ¢ by holding
these and summing fx over all remaining possible values of
X.

Conditional pmf (cgB 4.2.1) For (X,Y) a discrete random vec-
tor, f(ylz) = P(Y = y|X = a) = f(z,y)/fx (), where
f(z,y) is joint pmf, and fx(z) is marginal pmf.

Probability density function (c&B 1.6.3, 5 4.1.10) For a con-
tinuous r.v., fx(z) defined as the function which satisfies
Fx(z)= ["_ fx(t)dt for all z. A function fx is a pdf iff:

L Vz, fx(z) > 0;

2. [pfx(@)de=1.
fx gives the probability of any event: P(X € B) =
Jg Lwen) fx (z) dz.
A continuous (in all dimensions) random vector X has
joint pdf fx(z1,...,zn) iff VA C R, P(X € A) =
S fafx (@, .. zn) doy - - dop.

Marginal pdf (c&B p. 145, 178) For a continuous (in all dimen-
sions) random vector,

fX,;(xi)E/"‘/ 1fX(Z')dxl"‘dxi—ld-TiJrl"'dl‘ny
Rn—

i.e., hold X; = z;, and integrate fx over R in all X; for
i
We can also take the marginal pdf for multiple ¢ by holding

these and integrating fx over R in all X; that aren’t being
held.

Conditional pdf (c&B 4.2.3, p. 178) For (X,Y’) a continuous ran-

dom vector, f(ylz) = F(z,)/fx(x) as long as fx(z) # 0,
where f(z,y) is joint pdf, and fx(x) is marginal pdf.

We can also condition for/on multiple coordinates:
e.g., for (X1,X2,X3,X4) a continuous random vector,
f(xs,zalz1,22) = f(21,22,23,74)/ fx; x5 (%1, 22), where f
is a joint pdf, and fx, x, is the marginal pdf in X7 and Xo.

Borel Paradox (4.9.3) Be careful when we condition on events of
probability zero: two events of probability zero may be equiv-
alent, but the probabilities conditional on the two events is
different!

Stochastic ordering (c&B ex. 1.49, ex. 3.41-2) cdf F'x stochastically
greater than cdf Fy iff Fx(t) < Fy (t) at all ¢, with strict
inequality at some ¢. This implies P(X > t) > P(Y > t) at
all ¢, with strict inequality at some t.

A family of cdfs {F(z|0)} is stochastically increasing in 6 iff
01 > 02 = F(x|01) stochastically greater than F(x|62).
A location family is stochastically increasing in its location
parameter; if a scale family has sample space [0,00), it is
stochastically increasing in its scale parameter.

Support set (c&B eq. 2.1.7) Support set (a.k.a. support) of a r.v.
X is X = {z: fx(x) > 0}, where fx a cdf or pdf (or in
general, any nonnegative function).



1.3 Transformations of random variables

Transformation R! — R! (ceB 2.1.3, 5, 8) A discrete r.v. can be
transformed into a discrete r.v. A continuous r.v. can be
transformed into either a continuous or a discrete r.v. (or
mixed!). When Y = ¢g(X) and Y = ¢g(X) (where X is the
support of X),

1. If g monotone increasing on X, then Fy(y) =

Fx (g7 (y)) fory € Y;

2. If g monotone decreasing on X and X a continuous r.v.,
then Fy (y) =1 — Fx (g '(y)) fory € Y.

If g monotone, fx continuous on X, and g~ ! has continuous
derivative on ), then:

fy(y) = {(];X (67 ) ‘d%g

If {A;}k_, partitions X, with P(X € Ag) = 0; fx continu-
ous on each A;; and 3{A4;}%_, satisfying:

”(y)’, yEY;

otherwise.

1. g(z) = gi(x) for z € A;,
2. g; monotone on A;,

3. 3Y, Vi, gi(A;) = Y (i.e., all A; have same image un-
der their respective g;s) [Hansen note 2-15 suggests this
need not hold],

4. Vi, g{l has a continuous derivative on Y; then:

) = {zf_lfx (57'W) | Eo7 |, vey

s otherwise.

Transformation R? — R? (ceB p. 158, 185) Let U = g1 (X, Y) and
V = g¢2(X,Y) where:
1. (X,Y) has pdf fxy and support A;

2. g1 and g2 define a 1-to-1 transformation from A to
B={(u,v): u € g1(A), v € g2(A)} (i.e., the support of

U, V)
3. Inverse transform is X = h1(U,V) and Y = ho(U,V);
then:
Fov(u,v) = fxy (hi(u,v), ha(u,v)) |J], (u,v) 6 B;
0, otherwise;

where J is the Jacobian,

oz Oz
J=det |8y gyl
ou v
If the transformation is not 1-to-1, we can partition A into
{A;} such that 1-to-1 transformations exist from each A;
to B which map (z,y) — (u,v) appropriately. Letting

z = h1i(u,v) and y = hg;(u,v) be the inverses, and J; the
Jacobian, on A;;

) hi; ha; i ;
Foo () — S P (s w), haiCa o)) Vil () € B;
0, otherwise.
For generalization to R™ — R" case for n > 2, see C&B
p. 185.
Convolution formulae (c&B 5.2.9, ex. 5.6) X 1L Y both continu-
ous. Then:
L fx4+y(2) = [ fx(w)fy (z — w) dw.
2. fX—Y(Z =[x fx(w)fy (w — z) dw.
3. fXY(Z = el &1 fx () fy (z/w) dw.
4. fxy(2) = [ lwlfx (wz) fy (w) dw.

Probability integral transformation (c&B 2.1.10, ex. 2.10) If
Y = Fx(X) (for X continuous) then Y ~ Unif(0,1). Can
be used to generate random samples from a particular dis-
tribution: generate a uniform random and apply inverse of
cdf of target distribution. If X is discrete, Y is stochastically
greater than Unif(0, 1).

1.4 Properties of random variables

Expected value, mean (c&B 2.2.1, 5-6, 4.6.6)

| fa ) fx (@) do
B0 = {ZM o(2) fx () do,

if X continuous;
if X discrete;

provided the integral or sum exists and that E |g(X)| # oo.
For constants a, b, ¢ and functions g1, g2 such that E(g1 (X)),
E(g2(X)) exist,

1. Elagi(X) +bg2(X) + ] = a E(g1(X)) + bE(g2(X)) + ¢
(i.e., expectation is a linear operator);

2. If Va, g1 () > 0, then E g1 (X) > 0;

3. If Vo, g1(z) > g2(x), then E g1(X) > E g2(X);

4. If Ve,a < g1(x) < b, then a < Eg1(X) <b.

The mean is the MSE minimizing predictor for X; i.e.,

min, E(X — b)? = B(X — EX)2. If Xy,...,X,, mutually
independent, then E[g1 (X1)----- gn(Xn)] =E[g1 (X1)] -+~
Efgn(Xn)].

Conditional expectation (c&B p. 150; Hansen 4-14-6; Hayashi 138-9)
a.k.a. regression of Y on X. E(Y|X) is a r.v. which is a func-
tion of X. For discrete (X,Y), E(g(Y)|z) = ZY 9(y) f(y|z).
For continuous (X,Y), E(g(Y)|z) = [ 9(y) f(y|z) dy. Con-
ditional expected value has all the standard properties of
expected value. Also:

1. E[g(X)|X] = g(X) for any function g.

2. E[g(X)h(Y)|X] = g(X
and h.

3. X 1Y = E(Y|X)=E(Y) (i.e., knowing X gives us
no additional information about EY).

4. E(Y|X)=E(Y) = Cov(X,Y)=0
E(Y|X) is the MSE minimizing predictor of Y based
on knowledge of X, (i.e., minge) E[Y — g(X)]? =
E[Y — E(Y|X)]?).

)E[h(Y)|X] for any functions g

Let X be a r.v. that takes values in (R, B), let G = o(X)
(i.e., the smallest sigma field measuring X), and assume
E|Y| < co. Conditional expected value of Y given X, is
defined implicitly (and non-uniquely) as satisfying;:

1. E|E(Y|X)| < oo

2. E(Y|X) is G-measurable (i.e., Y| X cannot rely on more
information than X does);

3.¥G € G, [LE(Y|X)dP(w) = [,YdP(w) (ie.,
E[E(Y|X)|X €G] = BE[Y|X € G));

]

where the notation [z -dPx (x) means [g - fx (z)dz if X i
continuous, and means Y__ - fx (z) if X is discrete.

Two-way rule for expectations (c«B p. 58, ex. 221) Ify =
g(X), then Eg(X) = EY; ie, [pg@)fx(z)de =
Jrufy (v) dy

Law of Iterated Expectations (c&B 4.4.3; Hansen 4-21) EX =
E[E(X]Y)], provided the expectations exist. More generally,
when £ C M (i.e., £ contains less information, M contains
more),

E[X|L] =

E[E(X|M)[L] = E[E(X]|£)|M].

Median (c&B ex. 2.17-18) m such that P(X < m) > % and
P(X >m) > 1.
absolute deviation; i.e., ming E|X —a| =

If X continuous, the median minimizes
E|X —m]|.

Mode (c&B ox. 2.27) f(z) is unimodal with mode equal to a iff
a>zr>y = f(a) > f(z) > f(y)anda <z <y =
fla) = f(=) = fy).

1. Modes are not necessarily unique.
2. If f is symmetric and unimodal, then the point of sym-

metry is a mode.

Symmetric distribution (c&B ex. 2.25-26) If fx is symmetric
about a (i.e., Ve, fx(a+¢) = fx(a —¢€)), then:
1. X and 2a — X are identically distributed;
2. If a =0, then Mx is symmetric about 0;
3. a is the median;
4. If E X exists, then EX = a.



5. For odd k, the kth central moment py is zero (if it ex-
ists); if the distribution is symmetric about 0, then all
odd moments are zero (if they exist).

Moment (c&B 2.3.1, 11; Hansen 2-37) For n € Z, the nth moment
of X is pj, = EX™. Also denote pf = EX as pu. The nth
central moment is un = E(X — p)".

1. Two different distributions can have all the same mo-
ments, but only if the variables have unbounded support
sets.

2. A distribution is uniquely determined by its moments
if all moments are defined and limp o0 D54 u;rk/k’!
exists for all r in a neighborhood of zero.

Variance (c&B 2.3.2, 4, p. 60, 4.5.6, ex. 4.58) Var X = ps = BE(X —
EX)?2 =EX? — (EX)2. Often parametrized as 2.

1. For constants a, b, if Var X # oo, then Var(aX + b) =
a? Var X;

2. Assuming variances exist, Var(aX + bY) = a? Var X +
b2 VarY + 2ab Cov(X,Y);

3. Var[Y — E(Y|X)] = E[Var(Y|X)].
Multivariate variance (») Var X = E[XX']—E[X] E[X]’. Thus:

1. Var(X +Y) = Var(X) + Cov(X,Y) + Cov(X,Y) +
Var(Y);
2. Var(AX) = AVar(X)A'.

Conditional variance (c&B p. 151, 4.4.7; Greene 81-4) a.k.a. scedas-
tic function. Var(Y|X) = E[(Y — E[Y|X])?|X] = E[Y?|X] -
(BlY|X])>.

1. X 1Y = Var(Y|X) = Var(Y).
2. Conditional variance identity: provided the expecta-

tions exist,

Var(Y) = E[Var(Y|X)] + Var[E(Y|X)]

residual variance regression variance

Implies that on average, conditioning reduces the vari-
ance of the variable subject to conditioning (Var(Y) >
E[Var(Y]X))]).

Standard deviation (c&B 2.3.2) 0 = v/ Var X.
Covariance (C&B 4.5.1, 3, ex. 4.58-9; Greene 77) Cov(X,Y) = E[(X —

EX)Y - EY)] = E[(X - EX)Y] = E[X(Y - EY)] =
E(XY)—- (EX)(EY). If X, Y, Z all have finite variances,

then:
1. Cov(X,Y) = Cov[X,E(Y|X)];
2. Cov[X,Y —E(Y|X)] =0;
3. Cov(X,Y) = E[Cov(X, Y|Z)] + Cov[E(X|Z2), E(Y|Z)].
4. Cov(X,Y + Z) = Cov(X,Y) + Cov(X, Z).

5. Cov(aX +bY,cX+dY) = acVar(X)+bd Var(Y)+ (ad+
be) Cov(X,Y).

Multivariate covariance (Hansen 5-28; Hayashi 75-6) Cov(X,Y) =
E(X-EX)(Y-EY)]=EXY') - (EX)(EY’). Thus:

1. Cov(AX,BY) = A Cov(X,Y)B’;
2. Cov(X,Y) = Cov(Y,X)".

Correlation (c&B 452, 5 7)
Cov(X,Y)/(oxoy)-

Corr(X,Y) = pxy

1. Corr(a1X + b1,a2Y + b2) = Corr(X,Y).

2. Correlation is in the range [—1, 1], with +1 indicating a
perfectly linear relationship (41 for positive slope, —1
for negative slope), by the Cauchy-Schwarz Inequality.

3. X 1Y = Cov(X,Y) = pxy = 0 (assuming finite
moments); note however that zero covariance need not
imply independence.

Skewness (C&B ex. 2.28; Greene 66) (3 = 43 - (#2)—3/2’ where p; is
the 7th central moment. Measures the lack of symmetry in
the pdf. 0 for any normal, ¢, or uniform; 2 for exponential,

2,/2/r for x2, 2y/a/a for gamma.

Kurtosis (c&B ex. 2.28) aq = g4 - ,u2_2, where p; is the ith central
moment. Measures the “peakedness” of the pdf. ay = 3 for
any normal. (Sometimes normalized by subtracting 3.)

Moment generating function (c&B 2.3.6-7, 11-12, 15, 4.2.12, 4.6.7,
9) Mx (t) = EetX as long as the expectation exists for ¢ in a
neighborhood 0. If Mx exists, then Vn € Z, n > 0,

mn

I _
p,n:EX"—dt—n

Mx (t)

t=0
1. It is possible for all moments to exist, but not the mgf.

2. If r.v.s have equal mgfs in some neighborhood of 0, then
the variables are identically distributed (i.e., an extant
mgf characterizes a distribution).

3. If the mgfs of a sequence of r.v.s converge to M x in some
neighborhood of zero, then the cdfs of the sequence con-
verge to F'x at all points where Fx is continuous.

4. For constants a, b, if My exists, then M,x4p(t) =
ePt My (at).

5. For X 1L Y, Mx+y(t) ==
X1,...,Xn mutually independent, Ms~ x, = []; Mx,.

6. For Xi,...,X, mutually independent, Z

(ale + bl) + -+ (aan + bn)y then MZ(t)
("= 0D) [T; Mx, (ast).

Mx(t)My(t). For

Characteristic function (cuB sec. 2.6.2) ¢x (t) = EeltX,

i=+/—1.

1. The cf always exists.

2. A cf completely determines a distribution: if the cfs of a
sequence of r.v.s converge to ¢x in some neighborhood
of zero, then the cdfs of the sequence converge to F'x
at all points where F'x is continuous.

3. For X ~ N(0,1), px () = e~t*/2,
4. We can recover probability from a cf: for all a, b such
that P(X =a) = P(X =b) =0,
_ e—ith

1 T —ita
P(X € [a,b]) = lim 7/ .

t) dt.
T—o0 2T J_p it ox(®)

Other generating functions (c&B sec. 2.6.2) Cumulant generat-
ing function = log[Mx (t)], if the mgf exists.

Factorial moment generating function (a.k.a. probability-
generating function when X is discrete) = EtX, if the ex-
pectation exists.

1.5 Distributions

Normal distribution (c&B p. 102-4, 2.1.9, 3.6.5, 4.2.14, 4.3.4, 6, 5.3.3;
wikipedia) Normal (a.k.a. Gaussian) particularly important
because it is analytically tractable, has a familiar symmetric
bell shape, and CLT shows that it can approximate many
distributions in large samples. If X is normal with mean
(and median) p and variance o2, then X ~ N(u,02) with
pdf

Ix(z)=

L —e-weeh) L, (m = M) _
V2ro? a o

fx has maximum at p and inflection points at u £ 0. Mo-
ments are EX = pu, EX2 = 2 + 02, EX3 = u3 + 3uc?,
EX* = p* 4 6p20? + 302

Stein’s Lemma: If g(-) is differentiable with E |¢'(X)| < oo,
then E[g(X)(X — u)] = 0? E¢/(X).

Z = (X — p)/o is distributed N(0,1) (i.e., “standard nor-
mal”). E[ZF] = 0if k odd, E[ZF] =1-3-5---(n— 1) if k
even. CDF denoted ®(-); pdf is

! 8722/2.
Vor

1. P(IX — u| < o) = P(|Z] < 1) ~ 68.26%;
2. P(|X — | € 20) = P(|Z] <2) = 95.44%;
3. P(IX — p| < 30) = P(|Z] < 3) ~ 99.74%.

?(z) = fz(2) =

Independence and zero-covariance are equivalent for linear
functions of normally distributed r.v.s. If normally dis-
tributed random vectors are pairwise independent, they are
mutually independent.

Given iid sample X; ~ N(u,o?), log-likelihood is
L(x) = — % log(2m) — 2 log(0”) — 52z Y (zi — p)*.

Many distributions can be generated with manipula-
tions/combinations of normals:



1. Square of standard normal is X%

2. If X ~ N(p,02), Y ~ N(v,72), and X L Y, then
X +Y ~ N(u+7,02 +72) (ie., independent normals
are additive in mean and variance).

3. The sum and difference of independent normal r.v.s are
independent normal as long as the variances are equal.

4. Ratio of independent standard normals is Cauchy (o =
1, 6 = 0); look for the kernel of the exponential distri-
bution when dividing normals.

Bivariate normal distribution (c&B 4.5.10, ex. 4.45) Parameters
px, by €R;ox, oy > 0; p € [-1,1]; and pdf (on R?):

flz,y) = (27Ta'xa'ym>7
<o (2 (725
_2p<75;5x) (y;jy) n (y;;ty)2>>.

1. The marginal distributions of X and Y are N(ux,0%)
and N(uy, 0% ) (note marginal normality does not im-
ply joint normality).

2. The correlation between X and Y is p.
3. For any constants a and b, the distribution of a X + bY
is N(apx + buy, a20§( + b20'§, + 2abpoxoy).
4. All conditional distributions of Y given X = x are nor-
mal: Y|X =z ~
N(py + ploy/ox) (z—px), o3 (1—p?)).
—_—
Cov(X,Y)/o%

Multivariate normal distribution (Hansen 5-17-35; MaCurdy p. 6;
Greene 94) p-dimensional normal, Ny, (i, 3) has pdf

F6) = @m) B2 exp [ Fx — ) S (x - )]
where p = E[X] and X;; = Cov(X;, X;).

A linear transformation of a normal is normal: if X ~
Ny (@, X), then for any A € R?*P with full row rank (which
implies ¢ < p), and any b € R?, we have AX + b ~
Ng(Ap+b, AZA’). In particular, Z~1/2(X — ) ~ N(0, 1),
where ©-1/2 = (21/2)-1 = HA~1/2H".

The following transformations of X ~ Np(u, X) are indepen-
dent iff AXB’ = Cov(AX,BX) = 0:

1. AX ~ N(Ap, ASA’) and BX ~ N(By, BEB/),

2. AX ~ N(Ap, ASA') and X'BX ~ x7 | gy, (where
BX is an idempotent matrix),
3. X'AX ~ x2 and X’BX ~ x2 (where

rank(AX) rank(BX)
A3 and BX are idempotent matrices).

Chi squared distribution (c&B 5.3.2; Hansen 5-29-32; MaCurdy p. 6;
Greene 92) X2 (Chi squared with n degrees of freedom) has
mean n and variance 2n. Can be generated from normal:

1. If Z ~ N(0,1), then Z2 ~ x% (i-e., the square of stan-
dard normal is a chi squared with 1 degree of freedom);

2. If X1,...,X, are independent with X; ~ Xzzw then
X~ X2E i (i-e., independent chi squared variables
add to a chi squared, and the degrees of freedom add).

3. If X ~ Ny (1, 2), then (X — p)! 71X — p) ~ x2.

4. If X ~ N, (0,I) and Py xn is an idempotent matrix,
then X'PX ~ Xfank(P) = Xix(p):

5. If X ~ N, (0,I) then the sum of the squared deviations
from the sample mean X'M,X ~ X%—l'

6. If X ~ N, (0,X) and B, x» X is an idempotent matrix,

2 — 2
then X’BX ~ Xrank(B) = Xtr(B=)

Student’s ¢ distribution (c&B 5.3.4; Greene 69-70) If X1,..., X,
are iid N(u, 0?), then v/n(X — p)/o ~ N(0, 1). However, we
will generally not know o. Using the sample variance rather
than the true variance gives v/n(X — u)/s ~ tn—1.

Generally, N(0,1)/4/x2_,/(n —1) ~ tp—1. If a t distribu-

tion has p degrees of freedom, there are only p — 1 defined
moments. ¢ has thicker tails than normal.

t1 is Cauchy distribution (the ratio of two independent stan-

dard normals). to is standard normal.

Snedecor’s F distribution (c«s 5.3.6-8) (x2/p)/(X2/q) ~ Fp,q.
The F distribution is also related by transformation with
several other distributions:

1. 1/Fp,q ~ Fyp (ie., the reciprocal of an F r.v. is another
F with the degrees of freedom switched);

2. (tq)? ~ F1,q;

3. (p/0)Fp.q/(1 + (P/0)Fp,q) ~ beta(p/2,q/2).

Lognormal distribution (ceB p. 625) If X ~ N(u,0?), then
Y = e¥ is lognormally distributed. (Note: a lognormal is
not the log of a normally distributed r.v.).

BY = e”+(”2/2);
VarY = 62("+"2) - 62”""’2.

Exponential families (c&B 3.4; Mahajan 1-5-6, 11) Any family of
pdfs or pmfs that can be expressed as

k
f(@|0) = h(z)c(0) exp (Z wi((’)ti(w)> ;
i=1

where h(z) > 0, {t;(z)} are real-valued functions, c¢(0) > 0,
{w;(0)} are real-valued functions, and the support does not
depend on 6.

Includes normal, gamma, beta, x2, binomial, Poisson, and
negative binomial. C&B Theorem 3.4.2 gives results that
may help calculate mean and variance using differentiation,
rather than summation/integration.

Can be re-parametrized as:

k
f(zln) = h(z)c"(n) exp (Z mti(x)> )
=1

over ‘“natural parameter space” H = {n =
M, mk): Jg h(z) exp(X:f:1 niti(z)) dz < oo}, where for

all n € H, we have ¢*(n) = [ [ h(z) exp(Zf:1 niti(x)) de] 1
to ensure the pdf integrates to 1.

The joint distribution of an iid sample from an exponential
family will also be an exponential family (closure under ran-
dom sampling).

Location and Scale families (c«B 3.5.1-7, p. 121) If f(x) a pdf,
u, o constants with o > 0, then g(z) also a pdf:

o) = 21 (21).

X ~gx)iff 3Z ~ f, X =0Z + p. Assume X and Z exist;
P(X <z)=P(Z < (x—p)/o), and if EZ and Var Z exist,
then EX =0 E Z + p and Var(X) = 2 Var Z.

1. Family of pdfs f(z — p) indexed by p is the “location
family” with standard pdf f(z) and location parameter
.

2. Family of pdfs %f(:r/cr) indexed by o > 0 is the “scale
family” with standard pdf f(z) and scale parameter o.
(e.g., exponential.)

3. Family of pdfs %f((:v — p)/o) indexed by p, and o > 0
is the “location-scale family” with standard pdf f(z),
location parameter p, and scale parameter o. (e.g., uni-
form, normal, double exponential, Cauchy.)

Stable distribution (Hansen 5-15) Let X1, X9 be iid F', and define
Y = aX1 +bXa + c. Then F' is a stable distribution iff Va,
b, ¢, 3d, e such that dY +e ~ F.



1.6 Random samples

Random sample, iid (5.1.1) R.v.s X1,..., X, are a random sam-
ple of size n from population f(z) (a.k.a. n iid r.v.s with
pdf/pmf f(z)) if they are mutually independent, each with

marginal pdf/pmf f(z). By independence, f(z1,...,Zn) =
Statistic (c&B 5.2.1; Mahajan 1-7) A r.v. Y = T(X1,..., Xn), where

T is a real or vector-valued function T'(z1,...,zn) whose do-
main includes the support of (X1, ..., Xy). The distribution
of Y is called its sampling distribution.

Alternately, any measurable function of the data (as distinct
from a parameter—a function of the distribution).

Unbiased estimator (Hansen 5-14; C&B 7.3.2) An statistic 6 is un-
biased for 6 iff Eg(f) = 6 for all §. That is, if Bias[d] =
Eg¢ 6 — 0 =0 for all 6.

Sample mean (C&B 5.2.2, 4, 6-8, 10, p. 216, 5.5.2) X = % > X (e,
the arithmetic average of the values in a random sample).
For any real numbers, the arithmetic average minimizes SSR,
(ie., z € argmin, Y, (z; — a)?).

1. fEX; = u < 0o, then EX = p (i.e., X is an unbiased
estimator of u)

2. If Var X; = 02 < oo, then Var X = o2 /n.

3. If X; have mgf Mx (t), then Mg (t) = [Mx (t/n)]™.

4. (Law of Large Numbers) If {X;} iid, E X; = p < oo and
Var X; = 02 < oo, then the series X, a8, 1 (this also
implies convergence in probability, the “Weak” LLN).

The distribution of the X;, together with n, characterize the
distribution of X:

1. If X; ~ N(p,02?), then X ~ N(u,02/n).

2. If X; ~ gamma(a, ), then X ~ gamma(na, 3/n).
3. If X; ~ Cauchy(6, ), then X ~ Cauchy(9, o).
4

I Xy ~ (1/0)f((xz — p)/o) are members of a location-
scale family, then X = ¢Z + u, where {Z;}7_, is a
random sample with Z; ~ f(z).

Sample variance (c&B 5.2.3-4, 6; Greene 102-4)

1

n—1%<
k2

1

2 _ 2 2 52
s2 = (X; — X) 7%—1[Zi:Xi nX].

Sample standard deviation is s = Vs2. If Var(X;) = 02 <
00, then Es2 = 62 (i.e., s2 is an unbiased estimator of o2).
2. — 282

aX X

For any real numbers {z;}" ;, we have Y, (z; — 7)2
> a2 — nz2.

Sample covariance (Greene 102-4)

sxy = 5 > (- )V - V)

:
- nil [zj:XiY;anY].

If Cov(X;,Y;) = oxy < oo, then Esxy = oxy (ie, sxy
is an unbiased estimator of oxvy). sax by = |ablsxy.
For any real numbers {z;,y;}7"_;, we have Y (z; — Z)(y; —
7) = >, Tiyi — nTY.

Sample correlation (Greene 102-4) Txy = sxv /(Sx5y)-
TaX,bY = (ab/|abl)rxy -

Order statistic (c«B 5.4.1-4) The order statistics of a sample
X1,...,Xn are the ordered values from Xy (the sample

minimum) to X,y (the sample maximum). Thus the sam-
ple median is

M= i(((n+1)/2), n is odd;
i(X(n/2) + X(n/2+1))7 n is even.

If {X;} , iid continuous r.v.s, then
n

Fxgy(@) =3 (n) [Fx (@)]*[1 = Fx ()]

k=j k

n!
@ = G0

See C&B 5.4.3 for discrete r.v.

Samples from the normal distribution (c&«Bs.3.1,6) {X;}7
iid N(p, 02) gives:

1. X 1 s? (can also be shown with Basu’s Theorem);

2. X ~N(u,0?/n);

w

. Var(s?) = 204 /(n — 1);

4. (n—1)s%/o? ~x2_,.
If {X;}7 , iid N(ux,0%) and {Y;}™, iid N(py,02),

sg(/sg, _ Sg(/o'g(
ok /oy sy/oy

~ Fn—l,m—1~

Fx@[Fx @)~ = Fx (@) 7.

1.7 Convergence of random variables
X, 25 X
ﬂ/sZr
as L,
Xn — X X, — X
\ Z
Xn 2 X
X, 4 x

See more LLNs and CLTs in “Time-series concepts.”

Convergence in probability (c&B 5.5.1-4, 12; Hansen 5-41; Hayashi
89; D&M 103; MaCurdy p. 9) {X;}52, converges in probability to
X iff, Ve > 0, limp— oo P(|Xn — X| > €) = 0, or equivalently
limy, s c0 P(| X — X| < &) = 1. Written as X,, 2 X or
Xn — X = 0p(1) or plim Xn=2X.

n— oo
1. Convergence in probability is implied by almost sure
convergence or convergence in Ly (for p > 0).

2. Convergence in probability implies convergence in dis-
tribution (but not conversely).

3. (Weak Law of Large Numbers) If {X;} iid with EX; =
< oo and Var X; = 02 < oo, then the series X, LN o
(stronger result gives convergence almost surely).

4. (Continuous Mapping Theorem) If X,, 2+ X and h is a
continuous function, then h(Xy,) = h(X).

5. If EX, — p and Var X,, — 0, then X, 25 .

Uniform convergence in probability (Hayashi 456-7; MaCurdy
p. 14; D&M 137) {Q;(6)}52, converges in probability to Qo(6)
. p
iff, supgeell@n(0) — Qo(0)]| — 0.

That is Ve > 0, limy, oo P(supyce||Q@n(0) — Qo(8)|| > €) =
0, or equivalently lim, — 0o P(supgeg||@n(0)—Qo(8)|| <€)
1.

This is stronger than pointwise convergence. Uniform con-
vergence in probability is the regularity condition required
to pass plims through functions or to reverse the order of
differentiation and integration.

Little o error notation (D&M 108-13; Hansen 5-42; MathWorld)
Roughly speaking, a function is o(z) iff is of lower asymp-

totic order than z.

f(n) = o(g(n)) iff limpoo f(n)/g(n) =
a sequence of random variables, then f(n
plim,, ., f(n)/g(n) = 0.

We write X, — X = op(n™7) iff n7(X, — X) 2 0.

0. If {f(n)} is
) = op(g(n)) iff



Big O error notation (p&M 108-13; Mathworld) Roughly speaking,
a function is O(z) iff is of the same asymptotic order as z.

f(n) =0(g(n)) iff |f(n)/g(n)| < K for all n > N and some
positive integer N and some constant K > 0. If {f(n)} is
a sequence of random variables, then f(n) = op(g(n)) iff
plim,,_, o f(n)/g(n) = 0.

Order symbols (D&M 111-2)
O(nP)+0(n?) = o(anX{pyq}).
o(nP) + o(n?) = o(nmax{P,q}).
O(nP) £ o(n?) = {O(W’),
o(n9),
O(P) - O(n) = O(n?*).
o(nP) - o(n?) = o(nPt9).

O(nP) - o(n?) = o(nPT9).

j
p<gq.

These identities cover sums, as long as the number of terms

summed is independent of n.
Asymptotic equivalence (p&m fln) =
limy oo f(n)/g(n) = 1.

g(n) iff

110-1)

Convergence in L, (Hansen 5-43-5; Hayashi 90; MaCurdy p. 11)
{X;}52, converges in Ly to X iff, limy— 00 E(| X —X|?) = 0.
Note this requires the existence of a pth moment. Written

L
P . .
Xn — X. Convergence in L2 a.k.a. convergence in mean
square/quadratic mean.

1. Convergence in Ly is implied by convergence in L for
q2p
2. Convergence in L, implies convergence in L; for j < p.

3. Convergence in L, (for p > 0) implies convergence in
probability and in distribution (but not conversely).

Lp

4. (Continuous Mapping Theorem extension) If X,, —

L
X and h is a continuous function, then h(X,) —
h(X).

Convergence in Ly to a constant requires lim, o E[(X, —
X)(Xn — X)] = limp o0 Bias? + Var? = 0. Thus it is nec-
essary and sufficient that squared bias and squared variance
go to zero.

Almost sure convergence (C&B 5.5.6, 9; Hayashi 89; D&M 106, 131;
MaCurdy p. 10) {X;}52; converges in probability to X iff,
. . as
Ve > 0, P(limp—oo | Xn — X| < &) = 1. Written X,, — X.
Also known as strong convergence, or convergence almost
everywhere.

1. Almost sure convergence implies convergence in proba-
bility and in distribution (but not conversely).

2. (Strong Law of Large Numbers) If {X;} iid with E X; =
i < oo and Var X; = 02 < oo, then the series X, 25 L.

3. (Strong Law of Large Numbers, niid) If {X;} niid with
EX,; = 0 and limp_y00 n ™2 > Var X; = oo, then the
series X, 2 0.

4. (Continuous Mapping Theorem extension) If X, 22 X
and h is a continuous function, then h(Xy) = h(X).

Convergence in distribution (c&B 5.5.10-13; Hayashi 90-1; Greene
110-20; D&M 107) {X;}$2, converges in distribution to X iff,
limp 00 Fx,, (¥) = Fx(x) at all points where Fx is contin-
uous. Written as X, 5 X or X, — X = Op(1) or as “X is
the limiting distribution of X,.”

1. Convergence in probability is implied by almost sure
convergence, convergence in Ly (for p > 0), or conver-
gence in probability.

2. Convergence in distribution implies convergence in
probability if the series converges to a constant.

Central Limit Theorem for iid samples (c&B 5.5.14-15; Hansen

5-60-65; Hayashi 96) Lindeberg-Levy CLT: \/ﬁ()_(n —p)/o i}
N(0,1) as long as the iid X;s each have finite mean, and fi-
nite, nonzero variance. Note a weaker form requires mgfs of
X; to exist in a neighborhood of zero.

In multivariate case, iid X; ~ (i, 2) satisfy v/n(Xn — ) 4,
N(0,X). Proved using Cramér-Wold Device.

We also have CLT for niid samples (Lyapounov’s Theorem),
Ergodic stationary mds CLT, and CLT for MA (co) processes.

Central Limit Theorem for niid samples (Hansen 5-62; D&M
126; MaCurdy p. 21-2) |Lyapounov’s Theorem] If X; ~
niid(p, 02) and a (2 + §)th moment exists for each X;, then

Va(Xn — ) 5 N(0,52),

where 62 = limp_ 00 % > 01-2, as long as the iid X;s each

have finite mean, and finite, nonzero variance. Note a weaker
form requires mgfs of X; to exist in a neighborhood of zero.

Implies that if e; ~ niid(0,2) (with extant (2 + §)th mo-
ment), and {z;} a series of (non-stochastic) constants, then

n-1/2z1c 4y N(0,028S,.) where S, = limy_ 00 % Y22 =

limy, 00 2 Z'Z.

Slutsky’s Theorem (c&B 5.5.17; Hayashi 92-3) If X, i) X and
Y, & a, where a is a constant, then:

1 YuXn S ax;

2 Xn+YnH X+a
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Delta Method (c&B 5.5.24, 26, 2s; Let
{Xi}$2, be a sequence of r.v.s satisfying /n(X, — 6) LN
N(0,02). For a given function g and specific 8, suppose g’ (6)
exists and ¢’(0) # 0. Then:

Wikipedia; Hayashi 93-4)

Valg(Xn) — g(0)] & N(0,02[¢/ (8)]%).

If ¢’(#) = 0, but ¢g"’(0) exists and ¢g”’(0) # 0, we can apply
the second-order Delta Method and get n[g(Xn) — g(0)] 4
39°9"(0)x3-

Alternate formulation: If B is an estimator for [ then
the variance of a function h(B) € R is Var(h(B)) =
Vh(B) Var(B)Vh(B). If h(B) is vector-valued, the variance
is H Var(B)H', where H = BT?’ (i-e., Hij = 9;hs(B))-

1.8 Parametric models

Parametric model (Manhajan 1-1-2) Describe an (unknown) prob-
ability distribution P that is assumed to be a member of a
family of distributions P. We describe P with a parametriza-
tion: a map from a (simpler) space © to P such that
P ={Py: 0 € ©}. If O is a “nice” subset of Euclidean
space, and the mapping Py is “smooth,” then P is called a
parametric model. A regular parametric model if either all
Py are continuous, or all are discrete.

Parameter (Mahajan 1-2) Mapping from the family of distributions
‘P to another space (typically a subset of Euclidean Space).
Can be explicitly or implicitly defined.

A function of the distribution (as distinct from a statistic—a
function of the data).

Identification (Mahajan 1-3-4; c&B 11.2.2) A parameter is (point)
identified if it is uniquely determined for every distribution;
i.e., if the mapping is one-to-one. When the parameter is
implicitly defined as the solution to an optimization prob-
lem (e.g., (P) = argmax;cg Qo(b, P)), identification corre-
sponds to existence of a unique solution to the optimization.

Two elements 01, 02 € © are observationally equivalent iff
they imply Py, = Pj,. Identification of 6 means there is
no other element of © observationally equivalent to 0; i.e.,
Py, = Py, = 01 =0>.
Identification in exponential families (Mahajan 1-5-6, Metrics
p.s. 5-1) For iid sampling from an exponential family where
ni(0) = 0;, if the k x k (Fisher Information) matrix

1(0*)=E Kdlogfl;z,e*)> (dlogz(eae*))/}

is nonsingular for every 0x € ©, then 0 is identified.

Conditional homoscedasticity (Manhajan 2-17) The assumption
that Var(Y|Z) = o2; i.e., variance of Y does not depend
on Z.



Regression model (Mahajan 1-6-7, 3-9 Hayashi 465-6, Metrics P.S. 7-7)

{Y;, X5}, where Y; € R the dependent variable (a.k.a. re-
sponse) and X; € R? the covariates or explanatory variables.
Possible specifications include:

1. E(Y;]X;) = g(X;) for some unknown function g (non-
parametric regression);

2. E(Y;|X;) = g(X!60) for some unknown 6p € RY
and unknown function g (single-index model; semi-
parametric);

3. E(Y;|X;) = X0 for some unknown 6y € R4,

4. (Y;|X;) ~ N(X!6p,0%) for some unknown 6 € RY
and 02 € R} (Gaussian regression model; 6 is iden-
tified and conditional MLE § = (X'X)~1X'Y is con-
sistent if E(X;X]) is nonsingular, conditional MLE
62 = L(v — X0y (v - X0)).

Linear regression model with non-stochastic covariates

(Mahajan 1-10-1, 18-9, Metrics P.S. 5-3) For two-dimensional Gaus-
sian regression model with X; = (1, z;)’ known. The param-
eter (6p,0?) is identified as long as the x; are not all identi-
cal, with complete sufficient statistic (3°Y;, > V2, > z;Y5).
MLE computed in problem set.

Seemingly Unrelated Regressions (Mahajan 2-11, 21)

{}/ini}?:l where 3/1 € R™ and Xi = (X{7,77X1/fn,z)l S
R(™*) . We assume Y; are (multivariate) normal distributed
with means E[Y;] = 2/, 85 where 85 € R™ and the parame-
ter of interest is 8= (B],...,8,) € R(m?),

Probit model (Mahajan 2-12-3, 3-9-10; Hayashi 466) iid {W;}, =

{Y;, Z;}*_, where Y; € {0,1} and Y; have conditional dis-
tribution P(Y; = 1|Z;) = ®(0'Z;) where ®(-) is the cdf of
the standard normal. 6 is identified and MLE is consistent
if E(Z;Z}) is nonsingular.

Alternate motivation is threshold crossing model: Y;* =
0'Z; — e; where ¢; 1L Z; and standard normal, and Y; =
I{y > 0}.

Nonlinear least squares (Mahajan 2-16-7, 3-6-7, 17-9) iid

{Yi, Z;}?_, where Y; have conditional expectation E(Y|Z) =
¥(Z,0). The parameter 6 can also be defined implicitly as
0 = argmin,cg E[Y — 4(Z,b)]2. Identification condition is
that for all b # 0, we have P((Z,b) # ¥(Z,0)) > 0.

See Mahajan 3-17-9 for asymptotic properties, including het-
eroscedasticity robust asymptotic variance matrix

Linear instrumental variables (Mahajan 2-22-3, 3-11-2) Y; =

X;0 + &; with moment conditions E[(Y; — X;0)Z;] = 0 for
random vector Z;. The Z; are “endogenous instruments”
for regressors X;, endogenous because Ee; X; # 0. Identifi-
cation condition for 6 is E(Z;X]) has full column rank and
that dimension of Z; be at least dimension of Xj;.

1.9 Statistics

Sufficient statistic (Mahajan 1-8-10; c&B 6.2.1) T(X) is sufficient

for {Py: 0 € O} (or more compactly for 6) iff the condi-
tional distribution of X given T(X) does not depend on 6;
ie., p(x|T(X)) = p(x|T(x),0). Once the value of a sufficient
statistic is known, the sample does not carry any further
information about 6. Useful for:

1. Decision theory: base decision rules on sufficient statis-
tics (for any decision rule, we can always come up with
rule based only on a sufficient statistic that has the same
risk);

2. Dealing with nuisance parameters in hypothesis testing:
find sufficient statistics for the nuisance parameters and
condition decision rules on them;

3. Unbiased estimation: look for unbiased estimators that
are functions of sufficient statistics.

Any one-to-one function of a sufficient statistic is also suf-
ficient. Outside exponential families, it is rare to have a
sufficient statistic of smaller dimension than the data.

Factorization theorem (Mahajan 1-9; c&B 6.2.6) In a regular para-

metric model {Py: 6 € ©}, a statistic T(X) (with range T)
is sufficient for 0 iff there exists a function g: 7 x © — R
and a function h such that f(x,0) = g(T'(x), 0)h(x) for all x
and 0.

Minimal sufficient statistic (Mahajan 1-12, 19; c&B 6.2.11) T'(X) is

minimal sufficient if it is sufficient, and for any other suf-
ficient statistic S(X) we can find a function r such that
T(X) = r(S(X)). This means that a minimal sufficient
statistic induces the coarsest possible partition on the data;
i.e., it has achieved the maximal amount of data reduction
possible while still retaining all information about the pa-
rameter.

Any one-to-one function of a minimal sufficient statistic is
minimal sufficient. If a minimal sufficient statistic exists,
then any complete sufficient statistic is also a minimal suffi-
cient statistic.

Likelihood function (mahajan 1-13-4) L(x,60) = p(x,0). This is

the same as the pdf/pmf, but considered as a function of 6
instead of x.

The likelihood ratio A(x, ) = L(x,+)/L(x,00), where 6y € ©
is fixed and known, with the support of Py a subset of the
support of Py, for all § € ©. The likelihood ratio is minimal
sufficient for 6.

Ancillary statistic (Manhajan 1-14; c&B 6.2.16) S(X) is ancillary for

0 iff the distribution of S(X) does not depend on 6.
It is first-order ancillary iff E S(X) does not depend on 6.
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Complete statistic (Mahajan 1-16; c&B 6.2.21, 28) T: X — T is
complete iff for every measurable real function g: 7 — R
such that V0 € ©, Eg[g(T)] = 0 implies that g(7") = 0 almost
everywhere. Equivalently, T' is complete if no non-constant
function of T is first-order ancillary.

If a minimal sufficient statistic exists, then any complete
statistic is also a minimal sufficient statistic.

Basu’s theorem (Mahajan 1-19; C&B 6.2.24, 28) If T(X) is a com-
plete minimal sufficient statistic, then 7(X) is independent
of every ancillary statistic. Note the minimal wasn’t really
necessary: if a minimal sufficient statistic exists, then any
complete statistic is also a minimal sufficient statistic.

Statistics in exponential families (Mahajan 1-11, 17 C&B
6.2.10, 25) By the factorization theorem, T(X) =
(T1(X),...,TK(X)) is sufficient for . (N.B. The statis-
tic must contain all the Tj.)

If X is an iid sample, then T(X) =
Q, Ti(X1), ..., >, Te(X;)) is a complete statistic if the
set {(n1(0),...,m5(0)): 6 € O} contains an open set in R¥.
(Usually, all we’ll check is dimensionality.)

1.10 Point estimation

Estimator (Mahajan 2-2) Any measurable function of the data.
Note this must not be a function of any parameters of the
distribution.

Extremum estimator (Hayashi 446) An estimator § such that
there is a scalar (“objective”) function Q. (0) such that 6
maximizes Qn(0) subject to § € © C RP. The objective
function depends not only on 6, but also on the data (a sam-
ple of size n).

Analogy principle (Mahajan 2-2-3) Consider finding an estimator
that satisfies the same properties in the sample that the pa-
rameter satisfies in the population; i.e., seek to estimate 6(P)
with 6(Py) where P, is the empirical distribution which puts
mass % at each sample point. Note this distribution con-
verges uniformly to P.

Consistent estimator (Mahajan 3-2; Hansen 5-41-2; C&B 10.1.1, 3)
The sequence of estimators {6,}52 ; is consistent for 6 iff
On LN 0(P). The sequence is superconsistent iff On — 0 =
op(n=1/2)). Superconsistency implies consistency.

If limp—oo Vargfy = 0 (variance goes to zero) and
limy,— o0 Eg 0, =0 (bias goes to zero) for every 6 € ©, then
{6} is consistent (sufficient, not necessary, by Chebychev’s
Inequality).

Consistency with compact parameter space (Mahajan 3-4-5,
11; Hayashi 457) Let 6, = argmax,cqQn(W,b) =
argmaxyco Qn(b). (In the last equivalence we have sup-
pressed dependence on the data W.) This covers M-
estimators, MLE, and GMM estimators. Suppose that:



1. © is a compact subset of R? [generally not satisfied];

2. Qn(b) is continuous in b for any realization of the data
W [“usually easily checked”];

3. Qn(b) is a measurable function of the data for all b € ©
[generally assumed].

These conditions ensure that 6, is well-defined. Suppose
there exists a function Qo(b) such that:

1. Identification: Qo(-) is uniquely (globally) maximized
on © at 0 € O©;

2. Uniform convergence: Qn(-) converges uniformly in
probability to Qo(:) [can be verified by checking more
primitive conditions; in particular, for M-estimators a
Uniform Weak LLN will suffice].

Then 6, RNy

Consistency without compact parameter space (Mahajan 3
5. 6; Hayashi 458) Let 6, = argmax,co Qn(W,b)
argmax,c o Qn(b) as above. Suppose that:

1. True parameter 6 € interior(©);
2. © is a convex set;

3. Qn(b) is concave in b for any realization of the data W
[will be true for MLE, since log-likelihood is concave, if
only after a re-parametrization];

4. Qn(b) is a measurable function of the data for all b € ©.

These conditions ensure that 6, is well-defined. Suppose
there exists a function Qo(b) such that:

1. Identification: Qo(-) is uniquely (globally) maximized
on © at 0 € ©;

2. Pointwise convergence: Qn(b) = Qo(b) for all b € ©.

Then 6, exists with probability approaching 1 and 0n 25 0.
See Mahajan 3-6 for M-estimators.
Uniform (Weak) Law of Large Numbers (Mahajan 3-6; Hayashi

459) Suppose {W; }; is ergodic stationary and that:

1. © is compact;

2. q(W;,b) is continuous in b for all W;;

3. q(W;,b) is measurable in W; for all b;

4. Ep[supycg lg(Wi, b)|] < oo.

Then % > a(W;, b) converges uniformly to E[q(W;,b)], and
E[q(W;,b)] is a continuous function of b.

Asymptotically normal es}imator (Mahajan 3-2, 13-4) The se-
quence of estimators {0,}; is (1/n) asymptotically normal
iff /1 (6, — O(P)) N N(0,V(P)) for some symmetric pos-
itive definite matrix V(P) (somewhat inaccurately referred
to as the asymptotic variance of 6,).

Suppose that

1. 6, is consistent for 6;
2. 0 € interior(©);

3. Qn(b) is twice continuously differentiable in a neighbor-
hood N of 6;

aQn(0) d
4. /n29n@ 9, N0, 2);
5. Uniform convergence of the Hessian: There exists a
matrix H(b) that is continuous and nonsingular at 6
such that
3%Qn(b)

sup | el — o)

p
— 0.
beN || 000¢

Then /a0, — 0) 2 N(0, H(0) " SH(0)~ ).

Asymptotic variance (ceB 10.1.9) If kp [0 — 0] 4 N(0, 02) for
some sequence of constants {kn}, then o2 is the asymptotic
variance.

Asymptotically efficient estimator (c&B 10.1.11-2) {6n} is
asymptotically efficient if /n[f, — 6] 4, N(0,0?) and o2
is the CRLB.

Under regularity conditions, the MLE is consistent and
asymptotically efficient.

Maximum Likelihood estimator (Mahajan 2-4-10, 36; Hayashi 448
9, 4635 O = argmaxycg L(X,b). Equivalently, for iid
data, 6 = argmaxyco % > logp(X;,b).* Estimating 0
argmaxyc o Ep, log p(X,b). An M-Estimator with ¢(X;, b)
—log p(Xi,b). Note:

1. The identification condition is that the parameter being
estimated is identified.

2. MLE need not always exist, and if they do, need not be
unique.

3. We may not be able to get a closed-form expression for
0, and therefore have to characterize it as the solution
to a maximization problem (or its FOCs).

4. The expected value of (log) likelihood is uniquely max-
imized at the true parameter as long as 6 is identified;
i.e., the Kullback-Liebler Divergence

p(X, 0)
p(X,b)

K(b,0) =Eg {log< )] > Ofor all b # 6,

or equivalently, if p(x, b) = p(x, #) for all x implies that
b=26.

*This is “quasi-ML” if used for non-iid data. It can be consistent even for (non-iid) ergodic stationary processes—see Hayashi 464-5.
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5. (Invariance property) If 0 is an MLE of 6, then h(f) is
an MLE of h(0).

Consistency for for MLE (Hayashi 463-465; Mahajan 3-8-10) Let
{yt,x¢} be ergodic stationary, and let 6 be the conditional
MLE that maximizes the average log conditional likelihood
(derived under the assumption that {y:,x;} is iid).

Suppose conditions (specified on Hayashi 464) allow us to

apply a general consistency theorem. Then [N 0o despite
the fact that the MLE was derived under the iid assumption.

Asymptotic normality for MLE (Mahajan 3-20-2;
Hayashi 474-6; D&M 258, 260-3, 270-4) Suppose {W;} = {Y;, Z;}
is an iid sample, that Z is ancillary for 6, that b, =
argmaxycg %Z log p(Y;|Z;,b) = argmaxycg Qn(b). Define

C&B 10.1.12;

score s(W;,b) = w and Hessian H(W;,b) =
8s(W;,b 821 Y;|Z;,b
g(abz ) Ogazg(agl\ i:b) Suppose:

1. 6, is consistent for §—generally fails either because
number of parameters increases with sample size, or
model not asymptotically identified (even if it is identi-
fied by any finite sample);

2. 0 € interior(O);

3. p(Y|Z,b) is twice continuously differentiable in b for any
(Y, Z);

4. E[s(W,0)] = 0 and —E[H(W,0)] = E[s(W,0)s(W,0)]
(this is stated as an assumption, but is the Information
Equality and hence holds if its requirements do);

5. ﬁ > s(Ws,0) 4, N(0, ) for some X > 0;

6. E(suppen||H(W,b)||) < oo, which implies via ULLN
that

1 n

sup 'f > H(Wi,b) — E[H(W, b)]‘ 2 0;

beNllm i

7. E[H(W, )] is nonsingular (only required at true param-
eter).

Then 6, is asymptotically normal with variance Z(6) ! (note
this is the Fisher information for ome observation, not the
joint distribution). The MLE is not necessarily unbiased,
but in the limit the variance attains the CRLB hence MLE
is asymptotically efficient. No GMM estimator can achieve
lower variance.

Estimation of asymptotic variance can either be done by es-
timating the Hessian or the score (either gives a consistent
expression using the Fisher Information Equality).

M-estimator (Mahajan 447) 0 =
argmingc g % S q(Xi,b) (assuming iid data). Estimating
0 = argmin, g Ep ¢(X, ).

2-15-6; Hayashi

1. MLE is an M-Estimator with ¢(X;,b) = — log L(X;,b).



2. Sample mean is an M-Estimator with ¢(X;,b) = (X; —
b)2.

Asymptotic normality for M-estimator (Mahajan
Hayashi 470-4; D&M 593) Suppose {W;} is an iid sample, that

0, = argmaxyec g 7Zq(W1,b) = argmaxycg @n(b). De-

3-14-7;

fine “score” s(W;,b) = W and Hessian H(W;,b) =
9s(W;,b 3%q(W;,b .
S(ab ) — qéab, ) Suppose:

1. O, is consistent for 0,
2. 0 € interior(©);
. q(W,b) is twice continuously differentiable in b for any
w;
4. % > s(Wy,0) 4, N(0, X) for some X > 0;*

5. E(suppen ||H(W,b)||) < oo, which implies via ULLN
that

1 n
sup fZH(Wi,b)f
venlin =

6. E[H (W, 0)] is nonsingular (only required at true param-
eter).

Then 6, is asymptotically normal with variance

(E[HW,0)))~ ' S(E[HW,0)) "

“Under appropriate conditions for a ULLN to apply,”
variance is estimated by:

= (22 HWL0.)]

this

' (237 s(Wi,00)5(Wi,00)']

P
(2> HWi6n)]

Method of Moments estimator (Mahajan 2-19-20) Suppose iid
data from a parametric model with § € R? identified and
the first d moments of Py exist: {m;(6) ;l 1 ={E¢ X7 };-i:l
Method of Moments estimator gives moments equal to sam-
ple moments:

R 1 )
m;(0) = m; = ;ng for all j € {1,...,d}.
=1

Generalized Method of Moments estimator (Mahajan 2-20-1;
Hayashi 447, 468) GMM estimates parameter 6 € R4 satisfy-
ing Elm(X, 0)] = 0 where m: X x © — R™ a vector of m
moment conditions. If 6 is identified, it is the unique solution
to the moment conditions.

When m > d we typically can’t find a 6 satisfying all moment
conditions, so instead we seek § = argmin, g Qn(b) where

Qn(b)z(%z (XZ,9> ( mel,e)

for some specified weight matrix S;,xm symmetric and
positive definite. =~ The quadratic form in S defines a
norm. Correct specification requires orthogonality condition
E[m(X;,0)] =0.

Extremum estimators can typically be thought of as GMM

estimators when we characterize them by FOCs. Includes
MLE and M-estimators that can be characterized by FOCs.

Consistency for GMM estimators (Mahajan 3-10-1; Hayashi 467—
8) Let 0, = argmax,cg Qn(b) (as above), where

(ZmXM))) (%;m(X,-,b)).

Qn(b) =

The true parameter satisfies Ep[m(W,0)] = 0 and
hence uniquely maximizes limit function Qo(b) =
—% E(m(W,b)]'S E(m(W,b)]. Suppose that:

1. © is a compact subset of R%;
2. m(b) is continuous in b for any realization of the data,

3. m(b) is a measurable function of the data for all b € ©
(this ensures that 6 is measurable);

4. The weight matrices Sy, converge in probability to some
symmetric positive definite matrix S.

Suppose further that:

1. Identification: E[m(W,b)] # 0 for any b # 6;

2. Dominance to ensure ULLN applies:

Efsup,ce lm(W,0)|]] < oo.

Then 6, Lo,

Showing identification and dominance for nonlinear GMM is
quite difficult and usually just assumed. If objective function
is concave, we can replace compact ©; continuous, measur-
able m; and dominance by requirement that E[m(W, b)] exist
and be finite for all b € ©.

Asymptotic normality for GMM estlmator (Mahajan 3-24-6;
Hayashi 478 81) Let 0, = argmaxycg — [mn( )] Wi [mn ()] =

n Zm(Xivbdxl)me
_ Omn(b)
- ob

argmaxycg Qn(b), where mn(b) =

Jacobian My (b)axm = % ngéb)

. Suppose:

1. The matrix My, (Bn)WnMn(l_)n) is invertible;

2. amn(0) % N(0,E[m(X,0)m(X,0)]) = N(0,S(0))
(by a CLT);
3. M (bn) 2 E[Z2659 ] = M(6) (by a ULLN);

4. Wn B w.

*If {W;} is non-iid ergodic stationary, then X is the long-run variance of {s(W;, 0)}; Gordin’s conditions are sufficient for this convergence.
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Then 6, is asymptotically normal with variance
[M(6)W M (6)'] =" M(6)WS(0)W M () [M(9)W M ()]~

If we choose W = S()~! (the efficient choice), the asymp-
totic variance reduces to [M(6)S(0)~1 M (9)']~ 1.

Assuming conditions for ULLN apply, we can estimate terms
using consistent estimators: Zm(X.L,é’ Ym(Xs, 6n)’

=15 9m(X.0n)
and M = - 37 5% .

Efficient GMM (Mahajan 3-26-7; Hayashi 212-3) Given above GMM
estimator, if W* = S(0)~! (the inverse of the variance of the
moment conditions), then the asymptotic variance reduces to
Ve = [M(0)S(0)"TM ()]~ 1.

This is the lowest variance (in the matrix sense) that can be
achieved. Therefore the optimal choice of weighting matrices
is any sequence of random matrices that converge to S~—1. A

natural choice is to develop preliminary estimates 6, 06
(often using the identity as weighting matrix) and generating

Wi = [E 3 m(Xi, 80) Y m(Xe,00) ]
P

Under conditions necessary to implement ULLN, W, —
S—1.

Minimum Distance estimator (Mahajan 2-23-4) Estimator én =
argmingc g gn (b)' Sngn (b) for some square weight matrix Si,.
GMM is a special case where gy, are sample averages of some
function.

Asymptotic normality for MD estimator (Mahajan 3-22-
5 Let 0, = argmaxycg — 2[gn( )] W [gn (D)] =
argmaxycg Qn(b). Define Jacobian [transpose of way we

— 9gn(b)

ob

usually write derivatives?] Gy (b) = . Suppose:

1. The matrix Gy, (0,)WyGrn(by) is invertible (where by,
is a point between 6 and 0,
expansion holds);

2. v/ngn(0) % N(0,5(6)) (by a CLT);
3. Gn(bn) 2 G(0) (by a ULLN);
4. W, B w.

for which a mean value

Then 0, is asymptotically normal with variance
[GOYWG(0) ] 1GO)WSO)WGH) [GO)WG(9)] L.

If we choose W = S()~! (the efficient choice), the asymp-
totic variance reduces to [G(6)S(8) " G(6)']~

Uniformly minimum variance unbiased estimator (Mahajan
2.27-9, Metrics P.S. 6-1; C&B 7.3.7, 17, 19-20, 23, 7.5.1) An unbiased
estimator ¢(X) of a quantity g(0) is a UMVUE (a.k.a. best
unbiased estimator) iff ¢ has finite variance and for every un-
biased estimator §(X) of g(0), we have Var ¢(X) < Var §(X)
for all #. Note:



. Unbiased estimators may not exist;
. Not every unbiased estimator is a UMVUE;
. If a UMVUE exists, it is unique;

. (Rao-Blackwell) If h(X) is an unbiased estimator of
g(0), and T(X) is a sufficient statistic for 6, then
¢(T) = E[h(X)|T] is unbiased for g(#), and has vari-
ance (weakly) lower than h(X) for all f—means we only
need consider statistics that are functions of the data
only through sufficient statistics;

O

5. If ¢(T') is an unbiased estimator of g(#) and is a func-
tion of a complete statistic T'(X), then all other un-
biased estimators that are functions of T' are equal to
¢(T) almost everywhere;

6. (Lehmann-Scheffé) If ¢(T') is a function (only) of a com-
plete statistic T'(X), then ¢(T) is the unique UMVUE
of E¢(T);

7. (Hausman Principle) W is a UMVUE for EW iff it is
uncorrelated with every unbiased estimator of 0 (prac-
tically, impossible to prove, except for the case where
W is a function only of a complete statistic).

Fisher Information (Mahajan 2-30-1, Metrics P.S. 6-3)

7(0) = B | (5 108 £(2,0)) (5 log f(z,e))/}.

Score

Fisher information for an iid sample is n times information
for each individual observation. For (univariate) normal,

o720 - 20
I(p,0?) = { 0 10_4} 5 I(wo®) = h 204} :
2

Cramér-Rao Inequality (Mahajan 2-30-1, 5; C&B 7.3.9-11, 15) Given
a sample X ~ f(x]0) and an estimator ¢(X) with Eg ¢(X) =
g(0), suppose that

1. The support does not depend on 6;

2. pdf f(x0) is differentiable in 6 almost everywhere;

3. Eg |¢p| < 0 (or per C&B, Varg ¢ < 00);

4. The operations of differentiation and integration can be
interchanged in dilg J o(x) f(x,0) dx;

5. Fisher Information Z() is nonsingular. Note under pre-
vious conditions,

(a) Z(8) = Varg[Z; log f(x,0)];

(b) If f(-,0) is twice differentiable and double integra-
tion and differentiation under the integral sign can
be interchanged, then (Fisher Information Equal-
ity):

2

7(0) = -8 | -2
90 00’

log f(x,0)| .

Then

Varg ¢(X) > (dil—?)/zwrl (dil—(;)) :

Attained iff there exists a function a(f) such that

a(0)[(x) — 9(0)] = 35 log f (x]6).

1.11 Decision theory

Loss function (Mahajan 2-24-5) We observe x € X with unknown
distribution Py € P. Loss function I: P x A — Rt (where A
is the action space), (P, a) gives the loss that occurs if the
statistician chooses action a and the true distribution is P,.
Common examples when estimating parameter v(P) include

1. Quadratic loss: I(P,a) = [v(P) — a]?;
2. Absolute value loss: (P, a) = |[v(P) — al;

3. 0-1 loss: action space is {0,1} and I(Py,a) is zero if
0 € O, one otherwise.

Decision rule (Manhajan 2-25) A mapping from the sample space X
to the action space A.

Risk function (Mahajan 2-25) Expected loss (expectation is taken
using the true distribution): R(Py, ¢) = Eg[l(Py, ¢)].

Mean squared error risk function (Mahajan 2-25-6; Greene 109-
11; c&eB 7.3.1) If loss function I(-,-) is quadratic loss, risk
function is MSE risk function: R(Py,¢) = Eg[¢(X) —
g(0)]2, where g(f) is the parameter being estimated. Note
R(Py, 6) = Biasg 6(X)]2 + Varg [6(X)].

Typically it is infeasible to minimize MSE, since it depends
on the (presumably unknown) parameter g(6). So we often
use UMVUE instead.

1.12 Hypothesis testing

Hypothesis testing (Mahajan 4-1-2) We observe data x from dis-
tribution P € P (usually {Py: 6 € ©}), and must decide
whether P € Py C P. The null hypothesis H is that
P € Py C P, or equivalently 6 € O . If Py is a singleton
we call H simple, otherwise composite (identically for K).
The alternate hypothesis K is P € Px C P (or 0 € O),
where Py NP = @ and we assume the maintained hypoth-
esis P € Py UPk.

Test statistic (Mahajan 4-2) Test statistic (a.k.a. test function) is a
decision rule §: X — {0, 1}, where 1 corresponds to rejecting
H, and 0 to accepting it. Typically we evaluate a test over
this action space using the 0-1 loss function.

Equivalently defined by a critical region in the sample space
C={xeX:éx) =1}
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Type I/Type II error (Mahajan 4-2) Type I error: rejecting H
when in fact § € ©f. Type II error: accepting H when
0€Ok.

Power (Mahajan 4-2-3) B5(0) = Pp(6(X) = 1), for § € O. The
chance of (correctly) rejecting H given that the true param-
eter is @ € © . One minus the probability of Type II error
at a given 6.

Size (Mahajan 4-3; Cc&B 8.3.5) For § € ©Op, the power function
Bs(0) = Py(6(X) = 1) gives the probability of a Type I error
(rejecting H incorrectly). Size is the largest probability of
this occurring: supgcg,, 85(0)-

Level (Mahajan 4-3; c&B 8.3.6) A test is called level a for some
a € [0,1] if its size is at most .

Distance function principle (Mahajan 4-7-8) When the hypoth-
esis is framed in terms of a parameter ¢ for which we have
a good estimate 60, it may be reasonable to reject if the dis-
tance between estimate and 0 € ©p is large; i.e., reject if
T(x) = infyco, d(0,b) > k, where d(-,-) is some distance
function.

p-value (Mahajan 4-8-9; C&B 8.3.26) The smallest level of significance
at which a researcher using a given test would reject H on the
basis of observed data x. The magnitude of the P-value can
be interpreted as a measure of the strength of the evidence
for H.

C&B offers a different conception: a test statistic with
p(x) € [0,1] for all x € X, and Py(p(x) < a) < a for every
0 € ©p and every o € [0,1].

If we observe an iid sample from normal with known variance
and use T'(x) = v/nX /o, the P-value is ®(—/nX /o).

Uniformly most powerful test (Mahajan 4-10, 19; c&B 8.3.11) Let
C be a set of tests. A test ¢* € C with power function (.« (0)
is a UMP class C test of H against K: 0 € O iff for every
c € C and every 0 € O, we have B+«(0) > B:(0). That is, for
every 0 € O, the test ¢* is the most powerful class C test.

In many cases, UMP level a tests do not exist.

Simple likelihood ratio statistic (Mahajan 4-10) For simple null
and alternate hypotheses, L(x,0m,0r) = p(x|0x)/p(x|05)
(where p is either a pdf or pmf). By convention,
L(x,0p,0x) = 0 when both numerator and denominator
are zero.

Neyman-Pearson Lemma (Mahajan 4-12; c&B 8.3.12) Consider
testing H : 6 = 0y against K : 0 = 61 where pdf/pmf is p(-|9).
Consider (randomized) likelihood ratio test function:

1, L(x,00,61) > k;
or(x) =40, L(x,00,01) < k;
76(071)7 L(xzeovgl):k'



1. If ¢y is a size a (> 0) test (i.e., Egy[px(X)] = ), then
¢r is the most powerful in the class of level «a tests.

2. For each o € [0, 1] there exists a MP size « likelihood
ratio test of the form ¢y.

3. If a test ¢~> is a MP level « test, then it must be a level «
likelihood ratio test. That is, there exists k and vy such
that for any 6 € {6p, 61}, we have Py(¢(X) # ¢(X)) =
0.

Corollary: Power of a MP test > its size. Consider the test
that rejects for all data with probability «; it has power «,
so MP test can’t do worse.

Monotone likelihood ratio models (Mahajan 4-16-8; C&B 8.3.16)
{Py: 0 € O}, where © C R is a MLR family if L(x,01,02)
is a monotone function of some function of the data T'(x)
in the same direction for all pairs 62 > 61. If L(x,61,02)
is increasing (decreasing) in T'(x), the family is increasing
(decreasing) MLR in T'(x).

In the one parameter exponential family f(x|0) =
h(x) exp[n(6)T (x) — B(6)],

L(x,01,02) = exp [(n(02) —n(01))T(x) — (B(62) — B(61))];

and if n(0) is strictly increasing in 6 € O, the family is MLR
increasing in T'(x).

Suppose {Pyp: 0 € ©} where © C R is MLR increasing in
T(x). Let 8:(-) be the test that rejects if T'(x) > ¢ (and
possibly with some random probability if T'(x) = ¢). Then,

1. The power function S5, (0) is increasing in 6 for all € ©
and all t;

2. If Eg[0¢(X)] = o > 0, then §;(-) is UMP level o for
testing H: 6 < 6y against K: 6 > 6.

Unbiased test (Mahajan 4-20; C&B 8.3.9; Greene 157-8) A test ¢ for
H: 0 € Oy against K: 6 € O is unbiased of level « iff

1. By(0) < aforall @ € O (ie., level a); and
2. By(0) > a for all § € O (i.e., power > a everywhere).

If ¢ is biased, then there is some 0y € Oy and 0 € Ok
such that B4 (0r) > By (0K ); i.e., we are more likely to reject
under some true value than some false value.

Uniformly most powerful unbiased test (Mahajan 4-20-3) A
test ¢* for H: § € O against K: 0 € Ok is UMPU of
level « iff it is unbiased at level a and it is more powerful
(for all @ € O ) than any other unbiased test of level a.

The first condition is not strictly necessary, since the con-
stant randomized level a test is unbiased. If ¢ is UMP level
a, it will also be UMPU level a.

See Mahajan 4-23 for UMPU tests in one parameter expo-
nential families.

Likelihood ratio test (Mahajan 4-24-5, 34-6;
10.3.1, 3; D&M 275) Test that rejects for large values of

Greene 159-67; C&B

SUPgeco 5 p(x,0)

L(X) = .
(X) SUPgco, p(x,0)

Because distribution properties are often complex (and be-
cause O is often of smaller dimension than © = O UBO g,
which means sup over © x equals sup over ©), we often use

supgee P(x,0) _ p(x,0)
Supgeo, P(X,0)  p(x,00)

Ax) =

where 8 is the MLE and éc is the constrained MLE.

We will generally base our test on some monotonic function
of A(x). Often 2log A(x) = 2[log p(x, ) —log p(x, 0¢)]. Writ-
ten more generally, we often have

2n[Qn(0) — Qn(00)] & X2,

where

Qn(b)

r is the number of restrictions (and where here,
L3 logp(i, b))

Wald statistic (Hayashi 489-91; Greene 159-67; Mahajan 36-8; D&M 278)
Consider an estimator 0, = argmax;,co Qn(W, b) satisfying:

1. v/n(6 — 6p) has Taylor expansion

V(6 —6p) = —Wﬁlﬁiacggéeo) + op;

2. \/ﬁani(g@o) 4 N(0, %) for some positive definite 3;
3. /n(f — 6) converges in distribution (to something);
4. ¥ =—-W.

These conditions are satisfied for ML and efficient GMM un-
der certain conditions.

Under null Ho: a,x1(60) = 0, with A(6) = 2249

of full row rank (no redundant restrictions),

and A (6o)

W = na(d)[AO)S TAB) ] a(d) L y2.
Caution: % is the inverse of the asymptotic variance of the
estimator.

Note the restricted estimator doesn’t enter calculation of the
Wald statistic, so the size of resulting tests may be limited.
Also, the Wald statistic (unlike the LR or LM statistics) is
not invariant to the restriction formulation.

Lagrange multiplier statistic (Hayashi 489, 491-93; Greene 159-67;

Mahajan 38-9; D&M 275-8) Consider an estimator 6, =
argmaxyco Qn(W,b) € RP satisfying:
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1. v/n(0 — 6p) has Taylor expansion

Vn(d — o) = *‘P_I\/ﬁ%g%) + op;

2. \/ﬁaqﬁiyo) 4, N(0, Y) for some positive definite 3;

3. v/n(6 — 6p) converges in distribution (to something);
4. ¥ =-U.

These conditions are satisfied for ML and efficient GMM un-
der certain conditions.

Under null Hp: arx1(6o) = 0, with A(0) = Bg(gf)) and
A(6p) of full row rank (no redundant restrictions), define
the constrained estimator as f. = argmax,cq Qn(W,b) s.t.

a(b) = 0. Then
LMEn<aQn(9C))li—1<aQn(9c)> LN
o0 00
1xp pPXPp 1xp

where ¥ is a consistent estimator under the null (i.e., con-
structed using 6.).

Asymptotic significance (Mahajan 39) A test d,(-) has asymp-
totic significance level a iff limy,— 00 Pp(0n(X) = 1) < « for
all P € Po.

Asymptotic size (Mahajan 39) Asymptotic size (a.k.a. limiting
size) of a test dn(-) is limpn— oo sUPpep, Pr(In(X) = 1).

Consistent test (Manajan 39) A test 0,(-) is consistent iff
limn— o0 Pp(6n(X) =1) =1 for all P € P;.

1.13 Time-series concepts

iid white noise = stationary mds with finite variance —-
white noise.

Stationarity (Hayashi 98-9; Hansen B1-11; D&M 132) {2;} is (strictly)
stationary iff for any finite set of subscripts i1,...,%r, the
joint distribution of (z;, zi,, 2is, #i,.) depends only on i1 —
i ...,% — 1 but not on 7.

Any (measurable) transformation of a stationary process is
stationary.

Covariance stationarity (Hayashi 99-100, 401; Hansen B1-11) {z;} is
covariance- (or weakly) stationary iff:
1. pu = E[z;] does not depend on %, and
2. T'j = Covlz, z;—j;] (the j-th order autocovariance) ex-
ists, is finite, and depends only on j but not on .
A strictly stationary process is covariance-stationary as long
as the variance and covariances are finite.

LLN for covariance-stationary processes with vanishing au-
tocovariances:



1. If limj o0 v = 0, then g Lz, 75
2. If 32,77 < 00, then limp o0 Var(vng) = 3-,c77; <
oo (called the “long-run variance”).

White noise (Hayashi 101; Hansen B1-28) {€;} is white noise iff:

1. It is covariance-stationary,
2. E[e;] = 0 for all ¢ (zero mean), and
3. I'; = Covle;,ei—4] = 0 for j # 0 (no serial correlation).

An iid sequence with mean zero and finite variance is an
“independent” (i.e., iid) white noise process.

Ergodicity (Hayashi 101-2, 402-5; Hansen B1-12, 26; D&M 132-3) {2z;} is
ergodic iff it is stationary and for any two bounded functions
f:R* 5 Rand g: R - R,

s Zigk) - 9(Zigns o Zigngd)]|

nli_)moo ! E[f(z,...

Szig)l| | Elg(Zigns - zigng)]]-

(Note the RHS needs no limit in n, since by stationarity it
doesn’t affect g(-).) Intuitively, represents “asymptotic in-
dependence”: two elements sufficiently far apart are nearly
independent.

A sequence of the form {Z(z;,...,2;4+)} is also ergodic.
Ergodic Theorem is LLN for ergodic processes: if {z;} er-
godic stationary with E[z;] = u, then z, = % > % 25 L.
Gordin’s CLT for zero-mean™ ergodic stationary processes:
Suppose {z;} is ergodic stationary and

1. E[ztz}] exists and is finite;

L . . .
2. Elzt|zt—j,2t—j—1,...] —= 0 as j — oo (i.e., knowing
about the distant past does you no good in estimating
today);

3. Z;io
Elzt|z¢—j, zt—j—1,...] — Elzt|z¢—j—1,2¢—j—2,...] are

the “revisions” to conditional expectations as the in-
formation set increases.

/Elrt;res) < oo,  where Ty =

Then

1. E[z¢] = 0;

2. Autocovariances
>jezllyl < o00);

3. Z is asymptotically normal with long-run variance as in
covariance-stationary processes with vanishing covari-

ances:
Vnz N(O,ZFJ-),

jEL

are absolutely summable (i.e.,

Martingale (Hayashi 102-3; Hansen Bl-14; D&M 133) {z;} Is a
martingale with respect to {z;} (where z;, € z;) iff
Elzi|zi—1, zi—2,...,21] = xi—1 for i > 2.

Random walk (Hayashi 103; Hansen B1-14) An example of a martin-
gale. Let {g;} be an iid white noise process. The sequence
of cumulative sums {z;} where z; = g1 +-- -+ g; is a random
walk.

Martingale difference sequence (Hayashi 104; D&M 134; Hansen
B1-14) {g;} is an mds iff E[g;|gi—1, gi—2,...,91] = 0 for ¢ > 2.
The cumulative sum of an mds is a martingale; conversely,

the first differences of a martingale are an mds. A mds has
no serial correlation (i.e., Cov(g;, g;) = 0 for all ¢ # j).

Ergodic stationary martingale differences CLT (Hayashi
106-7; Hansen B1-15-6) Given a stationary ergodic mds {g;}
with E[g;g}] = &,

1 & d
Vng= — gi — N(0,%).
>

Lag operator (Hayashi 369-74; Hansen B1-31-3) Lixs = z¢—j. Filter
a(L) = g + a1 L+ asL? + - -. Filter applied to a constant
is a(L)e = a(l)e=c3 72, aj.

1. If coefficients are absolutely summable (3|a;| < o),
and {z:} is covariance-stationary, then y; = a(L)z:
converges in Lg and is covariance-stationary; if autoco-
variances of {z;} are absolutely summable, then so are
autocovariances of {y}.

2. As long as ap # 0, the inverse a(L)~! is well defined.

3.If a(z) = 0 = |z| > 1 (the “stability condi-
tion”), then the coefficients of «(L)~! are absolutely
summable.

Moving average process (Hayashi 366-8, 402; Hansen B1-28-9, 36-7)
Yt = p+ ZJO';O e, with {e;} white noise and Varey =
o2. Equivalently, (y; —u) = (L)e¢. Given absolute summa-
bility >, czl1;| < oo, a sufficient condition for convergence

(in Lo),
L. Ely] = 1

2. Autocovariances v; = 02> % o ¢ k¥ (if we have a

MA(q) process, v; = (%0 +jp191+- - +hqg—;)o2
for |5] < q);

3. Autocovariances «y; are absolutely summable (i.e.,
Pjez vl < o0);
4. Long-run variance 3., v; = a2[p(1))2.

5. If {e¢} is iid white noise, {y:} is ergodic stationary.

*Hansen B1-26 gives a slightly different statement for nonzero-mean ergodic stationary processes.

T This is actually a corollary of Billingsley’s stronger CLT (which does not require ergodic stationarity) stated in Hansen B1-16.
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CLT for MA(o0): If {e:} is 4id white noise, and absolute
summability > ;7 |¢¥;| < oo holds, then

valg =1 4 80,55 ) =N (0.2,

jez

Autoregressive process of degree one (Hayashi 376-8, 385) Yt =
c+¢yt—1+e¢, with {e;} white noise and Vare; = cr?. Equiv-
alently, (1 — ¢L)y: = c+ €, or (1 — ¢L)(yr — pu) = &+ where
n=c/(1-9).

1. If |¢| < 1, then the unique covariance-stationary so-
lution is the MA(00) ¢ = p + 3572 ¢ er—;; it has
absolutely summable coefficients.

e Byt =y,

% = #02/(1- ),

Autocovariances v; are absolutely summable,

P =75/v0 =7,

e Long-run variance > 77 = a2/(1— ¢)2.

2. If |¢| > 1, then the unique covariance-stationary solu-
tion is a MA(00) of future values of €.

3. If || = 1 (“unit root”), there is no covariance-
stationary solution.
Autoregressive process of degree p (Hayashi 378-80, 385)

Yyt =c+P1yi—1 + -+ PpYr—p + €t

with {e¢} white noise and Vare; = O’?. Equivalently,

¢(L)ys = ¢+ et where (L) =1 — p1L — -+ — ¢pLP (note
the minus signs). Equivalently, ¢(L)(y: — ) = e¢ where
p=c/¢(l) =c/(1 -3 26;)
Assuming stability (i.e., ¢(z) =0 = |z| > 1),

1. The unique covariance-stationary solution 1is the

MA(c0) y¢ = pu+ (L)~ Ley; it has absolutely summable
coefficients;

2. BEyr = 15
3. Autocovariances 7; are absolutely summable;

4. Long-run variance ;7 v; = a2 /[6(1))3.

ARMA process of degree (p,q) (Hayashi 380-3, 385; Hansen B1-30,
43-7) Autoregressive/moving average process with p autore-
gressive lags and ¢ moving average lags:

Yyt =c+ P1yt—1 + -+ ¢pyYt—p + Ooet + -+ + O0ger—q,
with {e¢} white noise and Vare; = 0'?. Equivalently,

d(L)yt = c+ 0(L)es



where ¢(L) =1 — ¢1L — -+ — ¢ LP (note the minus signs)
and (L) =6 + 61 L+ ---+ 604L7 . Equivalently,

d(L)(ys — ) = 0(L)es
c/op(1) = ¢/(1 — > ¢;). Note if ¢(z) and

0(z) have a common root, we can factor it out and get an
ARMA(p—1,q—1).

where p =

Assuming stability (i.e., ¢(z) =0 = |z| > 1),

1. The unique covariance-stationary solution is the
MA(c0) ¥+ = p + ¢(L)710(L)es; it has absolutely
summable coefficients;

2. Byt =
3. Autocovariances 7; are absolutely summable.
If 6(z) = 0 = |z| > 1 (here called the “invertability

condition”), we can write as a AR(c0): O(L)"1¢(L)y: =
(¢/0(1)) + e¢.

For ARMA(1,1) y¢ = ¢+ ¢yi—1 + ¢ — Oe¢—1, long-run vari-
ance is
1-0\?
2
Sv=at (1) -
JEL 1-¢

For ARMA(p,q) yt = ¢+ [X; biye—i] + et —
long-run variance is

[>2; 058e—5)

MR (12550
2= )2 E<1_Zi¢i> ’

JEZL

Autoregressive conditional heteroscedastic process

(Hayashi 104-5; Hansen B1-38) ARCH(q) is a martingale
difference sequence {g;} with conditional variance
Var[gilgi—1,---,91] = ¢+ a1g? , + -+ + Oéqgf_qv For

example, ARCH(1) is:

gi = €iy/C+ag?

and {e;} iid with Ee; = 0 and Vare; = 1.

1. Elgilgi-1,---,91] = 0;

2. Var[gi|gi—1,-..,91] = Elg?|gi—1,...,91] = ( + ag? 4,
which depends on the history of the process (own con-
ditional heteroscedasticity);

3. Strictly stationary and ergodic if |a| < 1 and g; drawn
from an appropriate distribution (or process started in
infinite past);

4. If the process is stationary, E[g?] = /(1 — a).

GARCH process (Hansen B1-38-9) GARCH(p,q) is a sequence
{r;} with conditional variance given by

Var[ri|ri_1,...,m1] = 0% =

wtairy  + -t agri, + Pro 4+ op .
For {r;} a GARCH(1, 1) process, define v; = 72 — ¢2. Then
we can write {r?} as an ARMA(1,1) and {07} as an AR(1),
with shocks {v;}:

1.2 =w+ (a1 +Bl)ri2,1 + vt — Brv—1,
2
1

T

o =w+ (a1 + ,31)01-2_1 + a1vp—1.

Local level model (Hansen B1-41-2) Xy is “true” latent variable,
Y: is observed value:

Y: = Xt + e,
Xe=X¢—1+e€t

with {n:} (measurement error) and {e:} independent iid
shocks. Y; isan ARMA(1,1) with Yz = Yi—14et+me—me—1.*

Estimating number of lags (Greene 834-5) Calculate sample au-
tocorrelations and partial autocorrelations using OLS:

e acf: For py, regress y: on y;_j (and potentially a con-
stant);

e pacf: For p}, regress yt on yt—1,..., Yk (and poten-
tially a constant), and use the coefficient on y;_j.

Typically, an AR(p) will have acf declining monotonically,
and pacf irregular out to lag p, after which they will abruptly
drop to zero and remain there.

Typically, an MA(q) will have pacf declining monotonically,
and acf irregular out to lag ¢, after which they will abruptly
drop to zero and remain there.

An ARMA(p, q) is a mixture of the above.

Estimating AR(p) (Hayashi 392-4, 547-9) Suppose {y:} with y; =
c+ [Z§:1 ¢jyi—;] + €¢, and {e;} 4id white noise (note we
need iid for ergodicity and stationarity). Then we can use
OLS to regress y¢ on (1,yt—1,...,Yt—p)’, since the model
satisfies linearity, stationary ergodicity, independence of re-
gressors from errors, conditional homoscedasticity, mds and
finite second moments of g, and the rank condition. We have
consistent, asymptotically normal estimation of ¢, as well as
consistent variance estimation.

Under Gaussian AR(1), conditional ML for ¢ is numerically

equal to OLS estimate, and conditional ML &%ML = %

Maximum likelihood with serial correlation (Hayashi 543-47)
Note that treating a serially correlated process as if it were
iid may give consistent (“quasi-”) ML estimators, since it is
an M-estimator no matter the data’s distribution.

1. Exact ML: use the fact that

_ Fns -, y0) ‘f(ynfh---,yo).
f(yn’m’yo)_f(ynfl,--wyo) fWn—2,-..,90)
-~ f(yo)

|

t=

Flytlyt—1,.. ., yo)] f(vo)-
1

Log-likelihood is generally nonlinear due to the last
term.

2. Conditional ML: use the (linear)

n
10g f(yn, -, yolyo) = >_10g f(yelye—1,-- -, vo0)-
t=1

1.14 Ordinary least squares

Ordinary least squares model (Hayashi 4-12, 34, 109-10, 123, 126;
Mahajan 6-4-6, 12-3) Let

Zi1 B1
X; = : 7/3 = : )
Kx1 Tik] Kx1 Bk
!
Y1 €1 X
Y =], e =], X =
N N, : N,
nx1 Yn, nx1 En nx K X!

The model may assume:

1. Linearity (p. 4): Y = X8 +¢;

2. Strict exogeneity (p. 7-9): E[¢|X] = 0 (n.b., conditional
on regressors for all observations); implies:

e E[e] =0,

o E[zjpe] = 0foralli =1,...,n, j = 1,...,n,
k=1,... K,

o Cov(ej,zjp) =0foralli=1,...,n,j=1,...,n,
k=1,...,K;

3. No multicolinearity (p. 10): rank(X) = K with proba-
bility 1 (full column rank);
4. Spherical error variance (p. 10-2): E[ee’| X] = 021, or
equivalently,
e Conditional homoscedasticity: E[e?|X] = o2 for all
i=1,...,n,
e No correlation between observations: Ele;e;|X] =
0 for i # j;
5. Normal errors (p. 34): €|X ~ N(0,02%I,), which given
above assumptions implies ¢ I X and & ~ N(0, 02L,);
6. Ergodic stationarity (p. 109): {y;, X;} is jointly station-
ary and ergodic (implies unconditional homoscedastic-
ity, but allows conditional heteroscedasticity);

*It is not clear to me what the white noise sequence and MA coefficients are that generate this sequence, but since e + n¢ — n3_1 is covariance stationary with two nonzero autocovariances, we should be able to fit one.
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7. Predetermined regressors (p. 109-10) All regressors
are orthogonal to the contemporaneous error term:
Elz;kei] = 0for alls = 1,...,n, k = 1,...,K; also

written E[g;] = 0 where g; = X5

8. Rank condition (p. 110): The K x K matrix Yo =
E[X;X]] is nonsingular (and hence finite);

9. g; is a mds with finite second moments (p. 110): {g;}
{X;e;} is a mds (which implies assumption 7); the
K x K matrix S = E[g;g}] is nonsingular;

10. Finite fourth moments for regressors (p. 123):
E[(zsx2:j)?) exists and is finite for all k, j = 1,..., K;

11. Conditional homoscedasticity (p. 126): E[e?|z;] = 02 >
0 (implies S = 02%,).

Ordinary least squares estimators (Hayashi 16-8, 19, 27-8, 31,

51-2; Mahajan _6-6-11) OLS estimator for B is b =
argminz SSR(B) = argming (Y — XB) (Y — XB). FOCs give
“normal equations” (a.k.a. “moment equations”) X’'Xb =
X'Y <= X’e =0 where e is OLS residual e = Y — Xb.

By no multicolinearity, X’X is nonsingular (hence positive
definite and satisfying SOC), so

b= (X'X)"1X'Y = Sy%sxy

minimizes normalized distance function

L(Y — Z8)(Y — Z6) = %

SSR.
2n62 né2

1. Unbiased: E[b|X] = S (under assumptions 1-3).

2. Gauss-Markov: b is most efficient among linear unbi-
ased estimators,” i.e., best linear (in Y) unbiased esti-
mator (assumptions 1-4).

3. Cov(b,e|X) =0, where e =Y — Xb (assumptions 1-4).

4. Var[b|X] = 0?(X’'X)~! (assumptions 1-4); therefore a
common estimator is Var(b|X) = s2(X’X)~!. Under
normal error assumption, CRLB

-1 _ o?(X'X) ! 0
- 0 20 /n

so b achieves CRLB and is UMVUE—this result is

stronger than Gauss-Markov, but requires normal er-
rors.

OLS estimator for o2 is

5 _ SSR e'e

s = = .
n—K n—K

Unbiased (assumptions 1-4). Under normal error assump-
tion, Var(s?|X) = 20*/(n — K) which does not meet CRLB
but is UMVUE.

Asymptotic properties of OLS estimator (#ayashi 113,
OLS estimator b satisfies

115)

1. Consistent: b 2 B (under assumptions 1, 6-8).

2. Asymptotically normal: /n(b — ) LN N(0, Avar(d))
where Avar(b) = DIPESC) Smis (assumptions 1, 6, 8-9).

3. Consistent variance estimation: Assuming existence of

a consistent estimator S for S = E[g;g;], estimator
Avar(b) = Sz2 855, is consistent for Avar(b) (assump-
tion 6).

OLS error variance estimator s (a.k.a. variance of residu-
als) is consistent for E[¢?], assuming expectation exists and
is finite (assumptions 1, 6-8).

Estimating S (Hayashi 1234, 127-8) If 3 (usually b) is consistent,
then &; = y; — x;ﬂ is consistent. Then under assumptions 1,
6, and 10, a consistent estimator for S is

Under assumptions 1, 6-8, and 11 (note with conditional ho-
moscedasticity, we no longer require finite fourth moments),
can use S = 525, where s is the (consistent) OLS estimate
of o2.

Biases affecting OLS (Hayashi 188-9, 194-7) OLS estimation in-
consistent due to, e.g.:
1. Simultaneity (p. 188-9);

2. Errors-in-variables (e.g., classical measurement error)
(p. 194-5);

3. Unobserved variables (p. 196-7).

Maximum likelihood estimator for OLS model (Hayashi 49;
Mahajan 6-18-9) Assuming normal errors, the OLS estimate
for 3 is also the ML estimate.

B = b;

52 _ 1, _ 1 _n-K 2
oML = pee=, SSR = 5%

Best linear predictor (Mahajan 6-2-3; Hayashi 139-40) Population
analogue of OLS. Suppose (y,z) a r.v. with y € R and
x € R¥. Best linear predictor of y given X is

B*(yl2) = L(yl) = ' Blza’]~ Blay].
If one regressor in x = [1 Z’]’ is constant, then E*(ylz) =

E*(y1,%) = p++'% Var[z] ! Cov[%,y] and
n=E[y] -~ E[z].

Fitted value (1ayasni 1s) Y = Xb = PY. Thus OLS residuals
e=Y —-Y.

where v =

*Variance of b is less than or equal to variance of any other linear unbiased estimator of B in the matriz sense; i.e., difference is positive semidefinite.
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Projection matrix (Hayashi 18-9; Mahajan 6-9-10; D&M 292-3) P =
X(X'X)~1X'. Projects onto space spanned by columns of
X (PX = X). Fitted values ¥ = Xb = PY. Idempotent
and symmetric.

An oblique projection matrix P = X(X'Q~1X)~1x/Q~!
(and its associated annihilator) are idempotent, but not sym-
metric.

Annihilator matrix (Hayashi 18-9, 30-1; Mahajan 6-9-10) M = I —P.
Residuals e =Y — Y = MY = Mg, and thus are orthogonal
to X (since MX = 0).

Sum of squared residuals SSR = e’e = Y/MY = Y'e =
e'Y =¢'Me.

M is idempotent and symmetric. rank(M) = tr(M) = n—K.

Standard error of the regression (Hayashi 199 SER = V/s2.
[a.k.a. standard error of the equation.]

Sampling error (iayashi 19, 35) b— 3 = (X’ X)~ 1 X’e. Under nor-
mal error assumption, b — 3| X ~ N(0,s2(X’'X)~1).

OLS R? (Hayashi 20-1, 67; Mahajan 6-11-2; Greene 250-3) In population,
the fraction of variation in Y attributable to variation in X

is
Var(z'f3)

= EE ()

1 Vare
Vary " Var Y

(“Uncentered”) sample analogue is: Y'V/Y'Y = 1 —

e'e/Y'Y.

Centered: should be used if regressors include a constant;
YWi—-9°® _,__ ce
>o(yi —9)2 >o(yi —9)?

Be careful when comparing equations on the basis of the
fit (i.e., R?): the equations must share the same dependent
variable to get a meaningful comparison.

Standard error (Hayashi 35-7)

SE(bx) = 1/s2[(X'X) "k = \/ [Var(b]X)] .-

Robust standard error (Hayashi 117, 211-2)

SE*(by) = /£ Avar(by) = /L (S22 S5

OLS t test (Hayashi 35-7; Mahajan 6-13-16) Assuming nogmal er-
rors. Test for H: B = . Since bp — Bg|X ~
N(0,02[(X’'X)"]xx) under null, we have

b — Br

SV oI T

N(0, 1).



OLS

OLS

OLS

If 02 is unknown, use s to get t-ratio:

b, — B _ b — B
S2[(X7X) e SE(bk)

~iln—K

under null. Accept for t; close to zero—t distribution sym-
metric about zero.

Level-a confidence interval for 3y, is by, £SE(by,) toy2(n—K).

robust ¢ test (Hayashi 117-9) Test for H: 8 = B. Under
null, we have

b = Yok = Br) _ bk —Br 4 N0, 1)
T e, SER() o
var (b )

F test (Hayashi 39-44, 53; Mahajan 6-16-7, 20-5) Assuming nor-
mal errors. Test for H: Ry,wxBrxx1 = T#rx1, Where
rank(R) = #r (i.e., R has full row rank—there are no re-
dundant restrictions). Accept if F' ~ Fy, ,_ (under null)
is small, where:

(Rb— ) [R(X'X)~1R]~L(Rb — r)/#r
2

F

(Rb — r)/ [RVar(bX)R') " (Rb — ) /#r
_ (SSRR—SSRy)/#r _n—K

_ 2/n _
SSRy /(n — k) #r (A b

(and A = Lyy/Lr = (SSRy /SSRR)™"™/2 the likelihood ra-
tio). The first and second expressions are based on Wald
principle; the third on LR.

F ratio is square of relevant ¢ ratio. F is preferred to multiple
t tests—gives an eliptical rather than rectangular confidence
region.

robust Wald statistic (Hayashi 118,  122) Test for
H: RyrxkxBrx1 = T#rx1, where rank(R) = #r (ie.,

R has full row rank—there are no redundant restrictions).
Under null,

W = n(Rb — ) [RAvar())R'] " (Rb — r) L X%,

For H: ay.(B8) = 0, where Ay, i (8) = Va(B) is continu-
ous and of full row rank, under null,

W = na(b)’ [A(b) Avar(B)A(B)'] " a(b) L xZ,-

Generalized least squares (Hayashi 54-9, 415-7; Mahajan 6-25-9;

D&M 289-92, 295) Without assumption 4 (spherical error vari-
ance), we have E[ee’|X] = 02V with Vj,x, # I assumed to
be nonsingular. Gauss-Markov no longer holds; the ¢t and F'
tests are no longer valid; however, the OLS estimator is still
unbiased.

By the orthogonal decomposition of V~1, we can write
V1 = C’'C for some (non-unique C). Writing § = Cy, X =

CX, £ = Ce, we get transformed model § = X8 + & which Short and long regressions (Manajan 6-33 7) Suppose we have

satisfies assumptions of classical linear regression model.
Thus we have the unbiased, efficient estimator:

BaLs = argmin(y — XB)'V ! (y — XB)
B
=(X'VTIxX)Tlx'vly
Var(Bars|X) = o2(X'V-1Xx)~L
This can also be seen as an IV estimator with instruments
Vv-lX.

Note consistency and other attractive properties rely on
strict exogeneity of regressors; if they are merely predeter-
mined, the estimator need not be consistent (unlike OLS,
which is).

Feasible generalized least squares (Hayashi 59, 133-7, 415-7; Ma-

hajan 6-25-9; D&M 298-301, 295) In practice, the covariance ma-
trix o2V is generally not known (even up to a constant).
Feasible GLS uses an estimate \7, and “under reasonable
conditions, yields estimates that are not only consistent but
also asymptotically equivalent to genuine GLS estimates, and
therefore share their efficiency properties. However, even
when this is the case, the performance in finite samples of
FGLS may be much inferior to that of genuine GLS.”

Caution that FGLS is that consistency is not guaranteed if
the regressors are merely predetermined (rather than strictly
exogenous).

Weighted least squares (Hayashi 58-9; Mahajan 6-27-8) GLS where

there is no correlation in the error term between observations
(i.e., the matrix V is diagonal). GLS divides each element
of X and Y by the standard deviation of the relevant error
term, and then runs OLS. That is, observations with a higher
conditional variance get a lower weight.

Can also think of as
B = argmin » 2 (y; — 2}8)>.
B i

Thus the “weights” typically passed to OLS software are the
reciprocal of the variances (not the reciprocal of the standard
deviations).

Frisch-Waugh Theorem (p&M 19-24; Hayashi 72-4; Greene 245-7)

Suppose we partition X into X; and X (and therefore 8
into 81 and B2). Then OLS estimators

b1 = (X1 X1) 71X (Y — Xaba);
by = (X5M1X2) N (X5M1Y)
— (RLRa) LKLY
where Xo = M1 X2 and Y = MY are the residuals from
regressing X2 and Y respectively on X7.

In addition, the residuals from regressing ¥ on X equal the
residuals from regressing Y on Xa.
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best linear predictors
E*(yla1, x2) = @} B1 + xh 2,
E*(yle1) = 40,

Then 81 =4 iff either E[z1z2] = 0 or B2 = 0 since

6=p01+ (E(lell))71 (E(I1I/2),32)

Note this result is the population analogue of the Frisch-
Waugh result for b;.

1.15 Linear Generalized Method of Mo-
ments

This material is also covered (with slightly different
notation—notably the exchange of x with z—in Mahajan
7.

Linear GMM model (Hayashi 198-203, 212, 225-6, 406-7) T he model

may assume:

1. Linearity (p. 198): y; = 2/0 + ¢; with z;, § € RE;

2. Ergodic stationarity (p. 198): x; € RX instru-
ments; unique, non-constant elements of {(yi,z;,x;)}
are jointly ergodic stationary (stronger than individu-
ally ergodic stationary);

3. Orthogonality (p. 198): All K elements of x; predeter-
mined (i.e., orthogonal to current error term): E[g;] =
Elzie;] = Elzi(ys — 2,0)] = 0;

4. Rank condition for identification (p. 200): X, =
Elz;z{] k x 1 has full column rank (i.e., rank L);

e K > L: Overidentified/determined (use GMM es-
timator),

e K = L: Just/exactly identified/determined (GMM
estimator reduces to IV estimator),

e K < L: Not/under identified/determined;

5. Requirements for asymptotic normality (p. 202-3):

e {g;} = {x;ei} is a martingale difference sequence
with K x K matrix of cross moments E(g;g;) non-
singular;

e S = limpoo Var[y/ng] =
Avar(% > gi) = Avar(% Y e2xixl);

e By assumption 2 and ergodic stationary mds CLT,
S =Elgig;] = E[E?l"il";];

6. Finite fourth moments (p. 212): E[(w;p24)?] exists and
is finite for all k£ and [;

7. Conditional homoscedasticity (p. 225-6): E(e2|x;)
o2, which implies S = E[gig}] = El[elzizl] =

o2 Elz;x)] = 02 ,5. Note:

Avar(g) =

e By assumption 5, 02 > 0 and ¥, nonsingular;



e S = &2% Sl = 628, where 62 consistent, so

no longer need assumption 6 for consistent estima-
tion of S;

8. {gt} = {wie+} satisfies Gordin’s condition (p. 406-7): it
is ergodic stationary and

(a) Elgtg;] exists and is finite;

L .
(b) Elgtlgt—j,gt—j—1;---] 2250 as j — oo;
(© S0 /Bl < oo
Elgtlgt—js gt—j—15---]1 = Elgelgt—j—1,9t—j—2,-- . ;
and the long-run covariance matrix S = Avar(g)
> jez 'y is nonsingular.

where 7y

Instrumental variables estimator (Hayashi 205-6) A method of
moments estimator based on K orthogonality (moment) con-
ditions. For just identified GMM model (K = L; identifica-
tion also requires nonsingularity of X,. = E[z;2]]),

Numerically equivalent to linear GMM estimator with any
symmetric positive definite weighting matrix. If instruments
are same as regressors (x; = z;), reduces to OLS estimator.
For properties, see GMM estimators.

S |
orv = Sy, Szy

If one non-constant regressor and one non-constant instru-
ment, plim dry = Cov(z,y)/ Cov(z, 2).

Linear GMM estimator (Hayashi 206-12, 406-7; D&M 219-20) For
overidentified case (K > L), cannot generally satisfy all K
moment conditions, so estimator is

S(ﬁ/\) = argmin %gn(g)/ﬁ/\gn(g)
5

= argmin 515 (Y — Z8) XWX'(Y — Z35)
5

with g, (8) = % >ixi(yi— zgg) and some symmetric positive

definite matrix W 2 W (where W can depend on data, and
W also symmetric and positive definite).

Savm = (84, WSe2) 1S, Wisay
= (Z'XWX'2)" ' Z/ XWX'Y.
If K = L (just identified case), reduces to IV estimator for
any choice of W.

/W) 2, 5 (under assumptions 1-4).

VRBW) - 8 5

1. Consistency: &(

2. Asymptotic normality:

N(0, Avar(§(W))) where
Avar(§(W)) =

(L W) 1S, WSWSE,, (B, W)™

—y—1 ) _yp-—1

(assumptions 1-4, 5 or 8). Note sampling error 5(W) -
6 = (S, WSz2)" 18, Wgn(5).

3. Consistent variance estimation: If S is a consistent es-
timator of S, then (assumption 2)

Avar(§(W)) =
(5., WSyz)" 1S, WSW Suz (S, WSaz)"
4. Consistent estimation of S: If § is consistent, S

E[g:g)] exists and is finite, and assumptions 1, 2,
implied?] and 6, then

Ze T = 1 Z(yl - z£3)2x1x; RNy
i

—
Sl

5=1

For estimation of S under assumption 8 in place of 5,
see Hayashi 407-12 on kernel estimation and VARHAC.

5. Choosing instruments: Adding (correct) instruments
generally increases efficiency, but also increases finite-
sample bias; “weak” instruments (that are almost un-
correlated with regressors) make asymptotics poorly ap-
proximate finite-sample properties.

GMM estimator can be seen as a GLS estimator: GMM min-
imizes ¢/ XWX'e = e WGLse where WGLS =XWX'.
GMM hypothesis testing (Hayashi 211-2, 222-4; Mahajan 7-7-12;
p&M 617-8) Assume 1-5. Under null, Wald principle gives:

1. Ho: 6, =96y,
W) =4
(W) — 6 a,

t =
SE;

N(0, 1).

2. Ho: Ryyrx1.0Lx1 = T#rx1, where rank(R) = #r (ie.,
R has full row rank—there are no redundant restric-
tions),

w

— ) [RiAvar(B(W)) R ™"
(REW) =) T x4,

n(R(W)

3. Ho: auq(0) =0, where Augyr(9)
ous and of full row rank,

= Va(9) is continu-

W = na(3(W))’ [AG(W)) [Avar(3(W) AG(W))'] "
a6(W)) L X

(Note W is mot numerically invariant to the represen-
tation of the restriction.)
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Distance principle statistic is by

J(6r(871),87Y) — J(u(871), 57 D xE,,

where J is 2n times the minimized objective function:

ngn(S)/S’\_lgn(S)
Ly - 25 X571X'(Y - Z5)

J(6,57Y

LM statistic is on Majajan 7-7-12 or D&M 617.

Note that unlike the Wald, these statistics—which are nu-
merically equal in finite samples—are only asymptotically
chi squared under efficient GMM. If the hypothesis’ restric-
tions are linear and the weighting matrix is optimally chosen,
they are also numerically equal to the Wald statistic.

Efficient GMM (Hayashi 212-5; D&M 588-9, 597-8, 607-8) Lower
bound Avar(5(W)) > (21,,871%,,)~1 is achieved if W cho-
sen so that W = plim W = S~!. Two-step efficient GMM:

1. Calculate & VV\) for some W (usually Sz'; use residuals
&=y — z:S(W) to obtain a consistent estimator S of

S.

2. Calculate §(5—1).

Note the requirement of estimating S—1 harms small-sample
properties, since it requires the estimation of fourth mo-
ments. Efficient GMM is often outperformed in bias and
variance by equally-weighted GMM (W = 1I) in finite sam-
ples.

Testing overidentifying restrictions (Hayashi 217-21; Mahajan 7-
13-6; D&M 232-7, 615-6) Assuming overidentification (K > L),
a consistent estimator § (ensured by assumption 6), and as-
sumptions 1-5, then

J=ngn(6(S )5 g, (6(51) L %,

To test a subset of orthogonality conditions (as long as K1
remaining—non-suspect—instruments are enough to ensure
identification), calculate J; statistic using remaining instru-
ments, and C = J — Jp LN x?(K — K1) (this is a distance
principle test, since J is 2n times the minimized objective
function). In finite samples, use the leading submatrix of S
to calculate Jj.



Two-Stage Least Squares (Hayashi 226-31; D&M 215-24) Under as-
sumption 7 (conditional homoscedasticity), efficient GMM
becomes 2SLS. Minimizing normalized distance function

1 <, -
——(Y — Z6)' Pp(Y — Z§)
2n62

yields estimator

Sas1s = 8(S71) = 8(10%Saa] ) = 6(S5)
(

—1
! -1 —1qr -1
zzszz Szz) Szzszz Szy-

Note SQSLS does not depend on 2.

Asymptotic variance Avar(dag1s) = 02(X,, SraSas) "L es-
timated by

o —

Avar(82SLS) = &2 (ngzS;zl 512)71

=62n(Z2' P 2)7t

with 62 = L 57 (y; — 2/das1.8) 2

n

If errors are heteroscedastic, 2SLS is inefficient GMM. Ro-
bust covariance estimate (since W = Sg1) is

—

AVar(SQSLS) =
(oSt Su2) 718l St 887 Su (S),. St Suz) ™1

Other characterizations of 2SLS minimize || Py (Y — Z§)||? =
(Y — Z6)' Pp(Y — Z§), or else note:

bosLs = (Z'X(X'X)'X'Z) '\ Z/ X (X' X)7IX'Y
=(Z2'P2)" Z'PY

where the projection matrix P, = X(X'X)"!1X’. So can
view 2SLS as:

1. IV regression of Y (or P,Y) on Z with P, Z (fitted val-
ues from regressing Z on X) as instruments, or;

2. OLS regression of Y (or P;Y) on P.Z (fitted values
from regressing Z on X )—this is why it’s called “two-
stage least squares.”

Caution: Don’t view standard errors reported by these re-
gressions are relevant for 2SLS, since they ignore errors from
“first stage” (i.e., calculation of fitted values P Z).

Durbin-Wu-Hausman test (p&M 237-42; MaCurdy) Suppose we
do not know whether certain regressors are endogenous or
not, and therefore whether or not they need to be included
as instruments. Assuming endogeneity, OLS will be incon-
sistent and we prefer 2SLS; assuming exogeneity, both OLS
and 2SLS estimates will be consistent and we prefer OLS (it
is BLUE, and unbiased under appropriate assumptions).

Test by estimating either artificial regression using OLS:

Y =Z8+P,Z"5+¢

i.e., including either fitted values or residuals from a first-
stage regression of suspect regressors Z* on known instru-
ments X. If Z* are exogenous, the coefficient § or n should
be zero.

Interpretation note: although the test is often interpreted as
a test for exogeneity, the test is actually for the consistency
of the OLS estimate. OLS can be consistent even if Z* are
endogenous.

Analogous test will work for nonlinear model as long as sus-
pect regressors Z* enter linearly; if Z* enter nonlinearly,
failure is due to Jensen’s inequality.

1.16 Linear multiple equation GMM

See Hayashi 284 for summary of multiple-equation GMM es-
timators. This material is also covered (with slightly different
notation—notably the exchange of x with z—in Mahajan 7.

Linear multiple-equation GMM model (Hayashi 259-265, 269—
70, 274-5) Hayashi 270 summarizes comparison to single-
equation GMM.

Model has M linear equations, where equation m has L,
regressors and K, instruments. Assumptions are exactly
parallel to single-equation GMM.

1. Each equation must satisfy its (equation-by-equation)
rank condition for identification.

2. The vector of all (y;,z;,x;) must be jointly ergodic
stationary—this is stronger than equation-by-equation
ergodic stationarity.

3. Asymptotic normality requires that {g;} be a mds with
nonsingular second moment, where

Xi1€i1
gi =
~—~ .
S K x1 XiMEiM

By ergodic stationary mds CLT, Sy g, x5 K,
Elg;g]] where

L S =y 1y
S = nlgnoo Var[y/ng] = Avar(g) = Avar( Zgz)

Elei1ei1xi1%},] Eleireimxi1x],,]

Ele;meinXimxs,] ElesmesmXin X 5]

4. Consistent estimation of S requires finite fourth mo-
ments E[(ﬂﬁimkzihj)2] for all kK = 1,...,Kmpm; j =
1,...,Lp;and m, h=1,..., M.
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5. Conditional homoscedasticity becomes
Eleim€in|Xim,Xin] = omp for all m, h = 1,..., M,
in this case

o11 E[xi1x);] o1m Elxi1x}, ]
S = :

o1 Elxinx] onm M Elxinex), ]

Linear multiple-equation GMM estimator (Hayashi 266-7,
270-3) Hayashi 270 summarizes comparison to single-equation
GMM. As in single-equation GMM case, SGMM minimizes
525 (Y — Z8) XWX'(Y — Z5), hence

Sanint = (S, WSn2) 1S Way
= (Z'XWX'2) ' Z XWX'Y,

(See Hayashi 267 for huge partitioned matrix representation;
can also be written with Y, €, and 3 stacked vectors, and X
and Z block matrices), where

ri o
7 2o XilZ]

SIEZ
~—~

2 Km X3 Lim

1 o
EZXzMZiM

[ L xiva

Szy =
~~
S KmXx1

1
L% doXiMYiM

1. If each equation is exactly identified, then choice of
weighting matrix doesn’t matter, and multiple-equation
GMM is numerically equivalent to equation-by-equation
IV estimation.

2. Equation-by-equation GMM corresponds to using a
block diagonal weighting matrix.

3. Assuming overidentification, efficient multiple-equation
GMM will be asymptotically more efficient than
equation-by-equation efficient GMM; they will only be
asymptotically equivalent if efficient weighting matrix
is block diagonal (i.e., if ElgimeinXimx},] = 0 for all
m # h; under conditional homoscedasticity, this is
Elgimein] = 0).

Full-Information Instrumental Variables Efficient (Hayashi
275-6; Mahajan 7-16-7) Efficient GMM estimator with:

e Conditional homoscedasticity (E(ee’|X) = Spxm @
Inxn)~



Weighting matrix is 571, where
4 1 ~
S=13"x5x],

i

~ 1 . ’ o 1 . ’
0114, Zilex“ O1M 5 Zilexuw

)

~ 1 X ’ P 1 X ’
TM17 D XiMXy TMM 3 D XiM X0y

and X; the Y K,, X M block-diagonal matrix of instruments
for the ith observation; and

1 a2l
by E Ei&y,
2

s

or

Omh

%Zéiméih
i
= 2 Wim — Zim0m) (Win — 2i3,0n)
i

for some consistent estimator d,, of dm, (usually 2SLS).
Suppose we have linearity; joint ergodic stationarity; orthog-
onality; rank condition; mds with finite second moments;
conditional homoscedasticity; and E[z;n 2}, ] exists and is fi-
nite for all m, h. Then SFIVE is consistent, asymptotically
normal, and efficient.

Three-Stage Least Squares (Hayashi 276-9, 308; Mahajan 7-17;

Macurdy) Efficient GMM estimator with:

e Conditional homoscedasticity (E(ee’|X) = Zapxm ®
Inxn)a

o The set of instruments the same across equations (X =
Iniw v ® Xpx i, where X are the instruments for each
equation).

Weighting matrix is $~1 = $-1® (% ST = S-1g
(L X'X)~1, where & = L 3. ¢;£ is the matrix of & calcu-
n n, 2 K3

lated as in FIVE using 2SLS residuals. Normalized distance
function o ~
= (Y = 26 (57' @ Pg)(Y — Z6)

yields estimator

d3s1s = [Z2/(E7! ®P;"<)Z]71Z/(i_l ® Pg)y

—175

_[ZEenZ) " ZE ey,

where Z = (I® P4 )Z are the fitted values from the “first-
stage” regression of the Z;,s on X.

Avar(8zs1.8) = n[Z' (S~ @ Pg)Z] .

Suppose we have linearity; joint ergodic stationarity; orthog-
onality; rank condition; mds with finite second moments;
conditional homoscedasticity; E[zimz,,] exists and is finite
for all m, h; and X;m, = X; (common instruments). Then
533Ls is consistent, asymptotically normal, and efficient.

3SLS is more efficient than multiple-equation 2SLS unless
either

1. ¥ is diagonal, in which case the two estimators are
asymptotically equivalent (although different in finite
samples),

2. Each structural equation is exactly identified, in which
case the system is exactly identified, and 2SLS and 3SLS
are computationally identical in finite samples.

Multiple equation Two-Stage Least Squares (Macurdy) Effi-

cient GMM estimator with:

e Conditional homoscedasticity across equations (¥ =
o*Inrx ),

e Conditional homoscedasticity (E(ee’|X) = Syxm @
Loxn = UZInMXnM):

e The set of instruments the same across equations (X =
Iy ® Xpx i, where X are the instruments for each
equation).

Weighting matrix doesn’t matter up to a factor of propor-
tionality, and is thus S~! = I ® (% Zzili;)’l =1IQ®
(1 X’X)~1. Normalized distance function

~9 -1

—(Y — Z3)’ ® Pg | (Y - Z§)

-2
oM

where Z = (I®Pg)Z are the fitted values from the first-stage
regression. The covariance matrix simplifies since ¥ = ¢2I:

Avar(bosrs) = né?[Z'(1® Pg)Z] ™!

=né2[Z'Z2)7
however, if ¥ # 021, we instead get
VA A R AL L= \VA VAN A

This is the same estimator as equation-by-equation 2SLS,
and the estimated within-equation covariance matrices are
also the same. Joint estimation gives the off-diagonal (i.e.,
cross-equation) blocks of of the covariance matrix.

Seemingly Unrelated Regressions (Hayashi 279-83, 309; Mahajan

7-17) [a.k.a. Joint Generalized Least Squares] Efficient GMM
estimator with:

e Conditional homoscedasticity (E(ee’|X) = Syxm @
I’ILXTL)7

o The set of instruments the same across equations (X =
Iniwmr ® Xox ik, where X are the instruments for each
equation).

e The set of instruments the union of all the regressors.

Note this is the 3SLS estimator; it just has another name
when instruments are the union of all regressors. Here, all re-
gressors satisfy “cross” orthogonality: each is predetermined
in every other equation. Since regressors are a subset of
instruments, residuals used to estimate ¥ are from OLS.*
Normalized distance function

(Y = Z8) (7 @I)(Y — Z9)
yields estimator

Ssur = [Z2/(E 7 oDz Z/(E oy,
- 1

Avar(dgug) = n[Z'(ifl QN)zZ] .

Suppose we have linearity; joint ergodic stationarity; orthog-
onality; mds with finite second moments; conditional ho-
moscedasticity; and xim = U,, Zim.T Then 3SUR is consis-
tent, asymptotically normal, and efficient.

If each equation is just identified, then all the regressors
must be the same and SUR is called the “multivariate regres-
sion”—it is numerically equivalent to equation-by-equation
OLS. If some equation is overidentified, we gain efficiency
over equation-by-equation OLS as long as some errors are
correlated across equations (i.e., o, # 0); we are taking
advantage of exclusion restrictions vs. multivariate regres-
sion.

Multiple-equation GMM with common coefficients

(Hayashi 286-9) When all equations have same coefficient
vector § € RL,

1. Linearity becomes yim = 2, +€im form =1,..., M;
i=1,...,n.

*When regressors are a subset of instruments, 2SLS becomes OLS.

TWe need neither the rank conditions (per Hayashi 285 q. 7) nor assumption that E[z;,, 2z}

in] exists and is finite for all m, h—it is implied.
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2. Rank condition requires full column rank of

E(X“Zfil)
Ypz = 5
) !
S Km XL E(X,L']MZZ.M)

Note here Y, is a stacked rather than a block matrix,
and the rank condition is weaker than in the standard
multiple-equation GMM model—rather than requiring
equation-by-equation rank conditions, it suffices for one
equation to satisfy the rank condition.

(S5 W Saz) 1S} Way
(as in standard multiple-equation GMM estimator), but here

1 o
7 2o XilZy

0GMM =

1
;anyil
Sz =

y Sxy =

%inMZ;M %inMyiM
Imposition of conditional homoscedasticity (and other appro-
priate assumptions as above) gives common-coefficient ver-
sions of FIVE, 3SLS, and SUR estimators—the latter is the
“random effects” estimator.

Random effects estimator (Hayashi 289-90, 292-3) Efficient
multiple-equation GMM (SUR) where all equations have
same coefficient vector § € RZ, conditional homoscedasticity
applies, and the set of instruments for all equations is the
union of all regressors.

We can write the model as y; = Z; + ¢;, where

/

Yi1 Z1 €i1
yi = | |, Zi = |, & =1
NV . ~ K ~ .
Mx1 YiM MxL Zi M Mx1 EiM

or as y = Z6 + ¢ by stacking the above (note Z is no longer
block-diagonal as it was for SUR). Then

JRE_( Zzz 12) (%Zz{i—lyi),

=[ZE T enz] ' Z/E " @ Dy;
Avar(Sgg) = (B2~ 2,]) %
Avar(ns) = (% Zéi_lzz')_ly

Pooled OLS (Hayashi 290-3, 309-10) Inefficient multiple-equation
GMM where all equations have same coefficient vector § €
RZ calculated by pooling all observations and applying OLS.
Equivalent to GMM with weighting matrix W = Iy ®

* Caution: yi does not merely collect y¢1, ..., ysar as usual.

(% Y- x;x})~1 rather than Sl ( Yoxix;)~L. Caution:
Running a standard OLS will give 1nc0rrect standard errors.

Using matrix notation as in random effects estimator,

SpoLs 7( ZZZ) <%;Z§yi),

=(2'2)"'2'y;
Avar(b,01s) = (E[Z.2Z:) ' E[Z/22:)(E[Z.2:])
Avar(SPOLS) =

(% Zz Zz{Z"b') o (% Zz Z£§Zi> (% Zz Z£Zi>71 s

=n(Z'2)" 2 (EeDZ](2'2)”

1.17 ML for multiple-equation linear mod-
els

Structural form (D&M 212-3; 520-30) Equations each
present one endogenous variable as a function of exogenous
and endogenous variables (and an error term). It is conven-
tional to write simultaneous equation models so that each
endogenous variable appears on the left-hand side of exactly
one equation, “but there is nothing sacrosancy about this
convention.”

Hayashi

Can also be written with the errors a function of all variables
(“one error per equation”)

Reduced form (D&M 213-4; Hayashi 529-30) Each endogenous vari-
able is on the left side of exactly one equation (“one endoge-
nous variable per equation”), and only predetermined vari-
ables (exogenous variables and lagged endogenous variables)
are on the right side (along with an error term).

Full Information Maximum Likelihood (Hayashi 526-35;
MacCurdy) Application of (potentially quasi-) maximum like-
lihood to 3SLS model with two extensions: iid (dependent
variables, regressors, and instruments), and conditionally
homoscedastic normally distributed errors. Model requires:

1. Linearity: ytm = 2},,,0m +€tm form =1,..., M;

2. Rank conditions: E[z¢z},,] of full column rank for all
m;

3. E[z¢x}] nonsingular;

4. The system can be written as a “complete system” of
simultaneous equations—Ilet y; be a vector of all en-
dogenous variables (those in Ye1, ..., Ytar, 2t1,- -+ 2t M
but not in x¢)*:

e The number of endogenous variables equals the
numbers of equations (i.e., y; € RM);

e Structural form

' vy + B xt = ¢t
~— ~ ~~
MxM Mx1 MxKKx1 Mx1
has nonsingular T';

5. et|xr ~ N(0,X) for positive definite X;

6. The vector that collects elements of y: (=
Ytly - s YtMs 21y - - - 2enr) and x¢ is iid (stronger than
a jointly ergodic stationary mds);

7. (6,T) is an interior points in a compact parameter space.

We can rewrite complete system as a reduced form

Yyt = o x+ w
-r-1B T—1lg

x+ is orthogonal to vector of errors v, so this is a multivariate
regression model; given our normality assumption, we have

yt|lze ~ N(=T 71 Box, TID(D 1Y),

and can estimate § (on which I' and B depend) and ¥ by
maximum likelihood. Generally use concentrated ML to first
maximize over ¥ to get S(5) = L = > i1 (Tye + Bat)(Tye +
Bz¢)' and then over 6.

Estimator is consistent and asymptotically normal (and
asymptotically equivalent to 3SLST) even if e|x; is not nor-
mal, as long as model is linear in y’s and errors (not neces-
sarily in regressors or parameters).

Maximum likelihood for SUR. (Hayashi 525-7; MaCurdy P.S. 3 1(v))
A specialization of FIML, since SUR is 3SLS with the set of
instruments the set of all regressors. In FIML notation, that
means 2y, is a subvector of x¢; therefore y; just collects the
(sole remaining endogenous variables) y:1,...,y:ps and the
structural form parameter I' = I. We get a closed form ex-
pression (for some consistent estimator E) unlike for general
FIML:

S =[2'E-1002] ' Z/(E 101y

LR statistic is valid even if the normality assumption fails to
hold.

T Per Hayashi 534 and MaCurdy, this asymptotic equivalence does not carry over to nonlinear (in endogenous variables and/or errors) equation systems; nonlinear FIML is more efficient than nonlinear 3SLS.
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Limited Information Maximum Likelihood (Hayashi 538-42;
Macurdy) Consider the mth equation in the FIML frame-
work, and partition regressors into endogenous ¢: and
predetermined Z¢:

Ym + i‘i

~~ ~~
IX My My X1 1X Ky Ko X1

Ytm = ng Om et = ﬂz Bm et
~~ ~— ~—
1X Ly Ly X1
where L., = My, + K.

Combining with the relevant rows from the FIML reduced
form y; = I’y + v¢ gives a complete 1 + M, equation sys-

tem:
r Yt + B Ty = &t
~—~ ~~ ~—~ ~—~ ~—
(I+Mm) X (14+Mpm) (1+Mm) X1 (1+Mp)xK KXx1  (1+Mp)X1
with

_ _ |yt — =

Yyt = [yg;n:| , + = [Etm’l)t] s

s_ |1 —vmr D — _B;n o’

e=) o] =[],
and Z+ assumed to be the first K,, elements of x;.
We estimate this structural form by ML as in FIML. Estima-
tor is consistent, and asymptotically normal even if e¢|z: s
not normal, as long as model is linear in y’s and errors (not
necessarily in regressors or parameters). It has the same

asymptotic distribution as 2SLS (again, if specification is
linear), but generally outperforms 2SLS in finite samples.

1.18 Unit root processes

Integrated process of order 0 (Hayashi 558) A sequence of r.v.s
is an I(0) process if it:
1. is strictly stationary;

2. has long-run variance Zjez v € (0,00).

It can be written as ¢ + ut, where {u:} is a zero-mean sta-
tionary process with positive, finite long-run variance.

Integrated process of order d (Hayashi 559) A sequence of r.v.s
{&} is an I(d) process if its dth differences A%¢; = (1— L)%,
are an I(0) process.

Unit root process (Hayashi 559-60, 565-6) An I(1) process, a.k.a.
difference-stationary process. If first-differences are mean-
zero, the process is called “driftless.”

If A& =6+ ug = 6 + ¥(L)et, the process can be written

t
o+t + D us

s=1

&t

t
5t +w(1)Zss+ Mt +(é0 — o)
s=1

~ N—

time trend  stoch. trend

~—~

stationary proc.

*The last expression assumes {A&¢} is iid white noise.

where 7y = (L)et and aj = —(Yj41 +Yjp2 +--+).

Eventually, the time trend (assuming there is one, i.e., § # 0)
dominates the stochastic trend a.k.a. driftless random walk,
which dominates which dominates the stationary process.

Brownian motion (Hansen B2-5-7, 18, 21; Hayashi 567-72) The ran-
dom CADLAG (continuous from right, limit from left) func-
tion W: [0,1] — R (i.e., an element of D0, 1]) such that:

1. W(0) = 0 almost surely;

2. For 0 < t1 < t2 < --- < tx <1, the random variables
W(t2) = W(t1), W(ts) = W(t2),. .., W(tg) — W(tg—1)
are independent normals with W (s)—W (t) ~ N(0, s—t);

3. W (t) is continuous in ¢ with probability 1.
If {&} is a driftless I(1) process, so that A& is zero-

mean I(0) with A2 the long-run variance of {A&} and
Yo = Var(A&:), then

T 1
1
=g, S ,\2/ W(r)2 dr
== 0
1 T d
T 2 Akki-1 = 3 (MW (1)? = 0)
t=1

1
= 02A£/ W (u) dW (u)
0
jointly (i.e., the W(-) are all the same).*

Function Central Limit Theorem (Hansen B2-9-17) [Donsker’s
Invariance Principle] A sequence {Y;} (where Yy = 0) can
be mapped into a D[0, 1] function by

Wn (u) = YLun |
or equivalently by

=Y; foruc [%,ﬁ)

n

IfY; = 3!, s for {e,} iid white noise, then n=1/2W, (u) =

n_l/QYLunJ 4, oW (u), where W (-) is a Brownian motion.

Dickey-Fuller Test (Hayashi 573-7; Hansen B2-2-4) Test whether an
AR(1) process has a unit root (the null hypothesis). In case
without drift, use OLS to regress y¢+ = pyt—1 + ¢ where {e¢}
iid white noise. Under null,

1 1
. T O Yi—16t W (u) dW (u)
T(pr — 1) = L5t i>f01 —— =DF
77 2 Y Jo W(u)? du

Tests with drift or non-zero mean covered in Hayashi.
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1.19 Limited dependent variable models

Binary response model (D&M 512-4, 517-21; MaCurdy) Dependent
variable y; € {0,1} and information set at time ¢ is Q;. Then

index
Elye|] = Prlye = 1] = F(r(er, B)) -
N ——

transformation

If E[y:|Q¢] = F(}8), then FOCs for maximizing log like-
lihood are same as for weighted least squares with weights
[F(1 — F)]~1/2, which is reciprocal of squareroot of error
variance.

FOCs may not have a finite solution if data set doesn’t iden-
tify all parameters.
Probit model (Hayashi 451-2, 460, 466-7,477-8; D&M 514-5; MaCurdy)

Binary response model with E[y;|Q:] = ®(z} ).

Can also think of as y; = z}3 + &; where e ~ N(0,1) and
yt = Iyx>o-

Log likelihood function (QML if non-iid ergodic stationary)
D> u® (@) + (1 — ye) (1 — ®(x}8))
t

is concave. MLE is identified iff E[zz}] is nonsingular. MLE
is consistent and asymptotically normal if identification con-
dition holds, and if {y:, z¢} is ergodic stationary.

Logit model (Hayashi 508-1; D&M 515) Binary response model with
Ely:|Q:] = A(z}8) where A(+) is the logistic function: A(v) =
exp(v)/(1 + exp(v)).

Can also think of as y; = x%ﬁ + ¢ where g¢ have extreme
value distribution and y; = ]Iy; >0-

Log likelihood function (QML if non-iid ergodic stationary)
D uA@i8) + (1= w)(1 = A(}5))
t

is concave. MLE is identified iff E[z¢«}] is nonsingular. MLE
is consistent and asymptotically normal if identification con-
dition holds, and if {y:, z:} is ergodic stationary.



Truncated response model (Hayashi 511-7; D&M 534-7; MaCurdy)
Model is y¢ = a}Bo + ¢ with e¢]zs ~ N(O, 0'(2), but we only
see observations where y; > ¢ for some known threshold c.
Density for each observation is

fyelye > c) = %
Note that if y¢ ~ N(uo,03),

Efytly: > c] = po + oc0A(v)
N (v)] = a5 [1 = A(w)[A(v) — ]

e — _¢)
where v = U:o and A(v) = T—®(v)

Varyelys > ] = op[1 —

is the inverse Mills ratio.

¢ — x}B0
o0

by nonlinear least squares, but ML is preferred because it is
asymptotically more efficient (and we have already imposed
full distributional assumptions).

Could estimate

Elytlyt > ] = x360 + oo (

Extension to nonlinear index function (in place of x}8) is
straighforward.

Tobit model (Hayashi 518-21; D&M 537-42; MaCurdy) [a.k.a. censored
response model] All observations are observed, but we do not
see y; if it is less than some known threshold ¢; “like a trun-
cated regression model combined with a probit model, with
the coefficient vectors restricted to be proportional to each
other.”

Model is
y¢ = max{z}Bo + &, c}
—_———
=y;
where e¢|z: ~ N(0,02) and {z¢,y:} iid.

Log-likelihood (a mix of density and mass) is

20 ()] e ().

Yyt>c Yyt=c

Reparametrize to get concavity.

Sample selection model (p&m 542-5; MaCurdy) Rather than trun-
cating according to dependent variable, truncate on another
variable correlated with it. Suppose y; (e.g., wage), and z;
(e.g., weeks) are latent variables with

L) [~ )
25| T |wyy ve |’ Vg Tlpoe 1 ’

and z¢ and w; exogenous or predetermined. We observe z¢
(the sign of zy) and y; = y; if 2z > 0.

For observations where z; > 0 (and hence we observe y;),
model becomes

(wiy)

— + €.
D (wiy)

Yyt = xp B+ po

Maximum Likelihood is best estimation technique (called
“generalized Tobit” here), but also sometimes estimated us-
ing either

1. Heckman two-step: first use probit estimation on all
observations to estimate 4, and then use OLS for ob-
servations where zj > 0 to estimate B; note the reported
covariance matrix in the second step will not be correct.

2. Nonlinear least squares: only uses any data on obser-
vations where z; > 0; generally has identification prob-
lems, since estimation is principally based on exploiting
nonlinearity of ¢(-)/®(-).

1.20 Inequalities

Bonferroni’s Inequality (c&B 1.2.10-11) Bounds below the prob-

ability of an intersection in terms of individual events:
P(AN B) > P(A) + P(B) — 1; or more generally

P(ir:]l Ai) ZP

n

1-> " P(AS).

i=1

—(n—-1)=

Boole’s Inequality (c&B 1.2.11) Bounds above the probability
of a union in terms of individual events: P (UJ,4;) <

22 P(Ai).

Chebychev’s Inequality (c&B 3.6.1-2, 5.8.3; Greene 66) A widely
applicable but “necessarily conservative” inequality: for any
r > 0 and g(x) nonnegative,
P(g(X) 2 r) <Eg(X)/r.
Letting g(z) = (x — p)?/0? where p = E X and o2
gives P(|X — pu| > to) <t72.

= Var X

See C&B 5.8.3 for a (complex) form that applies to sample
mean and variance rather than the (presumably unknown)
population values.

Markov’s Inequality (c&B 3.8.3) Like Chebychev, but imposes
conditions on Y to provide more information at equality
point. If P(Y > 0) = 1 (i.e., Y is nonnegative) and
P(Y =0) <1 (ie., Y not trivially 0), and r > 0, then
P(Y > r) <EY/r with equality iff P(Y =7)=1—- P(Y =
0).

Numerical inequality lemma (c&B 4.7.1) Let a and b be any
positive numbers, p and ¢ p0s1t1ve (necessarily > 1) satis-
fying % + 2 = 1. Then ap + bq > ab, with equality iff
aP = bd.

Holder’s Inequality (c&B 4.7.2) Let positive p and ¢ (necessarily
> 1) satisfy % + % =1, then

IEXY| < BIXY]| < (E|X|")/P(B[Y]9)V/.
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Cauchy-Schwarz Inequality (c&B 4.7.3; Wikipedia)
|IEXY|<E|XY| < +/(EX2)(EY?).

This is Holder’s Inequality with p =
Cov(X,Y) < y/Var(X) Var(Y).

Equality obtains iff X and Y are linearly dependent.

q = 2. Implies that

Minkowski’s Inequality (c&B 4.7.5)
[EIX +Y[P]V? < [BIXPP]YP + [E[Y[P]/P

for p > 1. Implies that if X and Y have finite pth moment,
then so does X + Y. Implies that E|X|P < E|X|P.

Jensen’s Inequality (c«B 4.7.7) If g(+) is a convex function, then
Eg(X) > g(EX).
Equality obtains iff, for every line a + bx tangent to g(x) at
z=EX, P(g(X)=a+bX)=1 (ie., if g(-) is linear almost
everywhere in the support of X).

1.21 Thoughts on MaCurdy questions
Default answer

If we assume , we know that __ is consis-
tent, assuming correct specification and e.g., ergodic station-
arity, regressors orthogonal to the contemporary error term,
instruments orthogonal to the contemporary error term, ap-
propriate rank condition(s) for identification.

We can test the null hypothesis that , which corre-
sponds to = 0, using a Wald test on Model _. The
statistic W = is asymptotically distributed x2(_)
under the null, thus we can(not) reject the null hypothesis.
Note we have used normal/robust standard errors.

We can also test the null hypothesis using a distance prin-
ciple test, where model __ is the unrestricted model, and
model __ represents the restrictions imposed by the null
hypothesis. Using a suitably normalized distance func-
tion Qr = , the statistic LR = 2T(Qr — Qu) =

is asymptotically distributed x?(_) under the
null.

[Note we cannot use the multiple equation 2SLS estimates to
conduct a distance principle test, since generating a suitably
normalized distance function would require having estimates
for the variance of the error for each equation (along with
the SSR for each equation).]

[Note that the validity of this distance function requires the
restricted and unrestricted models to use the same weighting
matrix; since #* the test statistic is not
valid. However, given the regression output available, this is
the best we can do.]

Thus we can(not) reject the null hypothesis.

If we instead assume
in this case
specification), so. ..

, our tests are no longer valid;
is consistent (again, assuming correct



Thoughts on models

1.

Two models with and without a restriction is for LR
testing.

. A model that includes only fitted values of an endoge-

nous variable is 2SLS.

. A model that includes both a (potentially) endogenous

variable and its fitted values or residuals is for a DWH
test.

. A model that includes lagged residuals is for testing

serial correlation.

‘Which model and standard errors to use

A less restrictive model will still be consistent and asymp-
totically more efficient; it is only harmed on finite sample
properties; same goes for robust standard errors.

Check for exact identification—models often simplify in these
cases.

Look ahead at all the questions; often it’s best to make an
assumption early, since later questions will ask you to give
up that assumption.

1.

Heteroscedasticity across observations

e Parametrize and use GLS.
e Parametrize and use ML.
o Others?

2. Homoscedasticity (across observations)

e 3SLS is efficient GMM.
e FIML is asymptotically equivalent to 3SLS.

3. Homoscedasticity (across observations), uncorrelated

errors across equations (i.e., ® diagonal)

e 3SLS is efficient GMM; 2SLS is not efficient GMM
(e.g., cannot use minimized distance function for
LR testing), but it is asymptotically distributed
identically to 3SLS

e 2SLS should generally have better finite sample
properties since it uses a priori knowledge of the
form of the S matrix (it assumes that S is 02I; even
though it is actually only diagonal, the resulting es-
timator is numerically identical to what we would
get if we only assumed diagonal S: equation-by-
equation 2SLS).

e FIML, LIML, 3SLS, and 2SLS are all asymptoti-
cally equivalent.

4. Homoscedasticity (across observations), uncorrelated

errors across equations, homoscedasticity across equa-
tions (i.e., ® = o1)

e 2SLS and 3SLS are both efficient GMM; they are
asymptotically equal and identically distributed.

e 2SLS should generally have better finite sample
properties since it uses a priori knowledge of the
form of the S matrix.

e FIML, LIML, 3SLS, and 2SLS are all asymptoti-
cally equivalent.

Hypothesis tests

Wald: basically always possible as long as estimator is con-
sistent and standard errors are calculated appropriately

Be careful when using formulae from Hayashi; they are
generally based on the asymptotic variance matrix; re-
gression output doesn’t estimate this, it estimates %

times the asymptotic variance matrix.

State assumptions that justify consistency of estimation
technique, and standard errors used.

Distance principle / LR

Need to use 2n times a suitably normalized maximized
objective function, i.e., one that satisfies “the prop-
erty”:

Var

oQT
VT 5o

2
oy o QT/
o 690

0o

For efficient GMM, Qr = %(X’e)’ﬁfl(X’e) satisfies
“the property,” where Q consistently estimates the vari-
ance of VT X'e.

We cannot generally use LR tests in the presence of
heteroscedasticity.

For GMM estimators, must use efficient weighting ma-
trix for LR to be valid.

Restricted and unrestricted estimates should use same
weighting matrix to be valid.

Including the 2n and the normalization, use:

. MLE: 2 - loglik

Reported value is usually loglik; required normalization
is 2.

e Valid no matter what if model is correctly specified.

. LS: SSR/42 = e’e/5?

Reported value is usually SSR; required normalization
is 1/62 .

e [nvalid under heteroscedasticity.

e Validity under serial correlation???

e Make sure to use the same estimate 62 in both re-
stricted and unrestricted models (typically SSR/n
or SSR/(n — k) from one of the two models).
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. 2SLS (single-equation): &12 e’ P.e
Reported value is usually e’ P, e; required normalization
is 1/62 .
e Invalid under heteroscedasticity (not efficient
GMM).

e Validity under serial correlation???

e Make sure to use the same estimate for &2 in

both restricted and unrestricted models (typically
SSR/n or SSR/(n—k) from one of the two models).

. SUR / JGLS: ¢/(d~1 @ I)e
Reported value is usually as desired; no normalization
is needed.

o [nvalid under heteroscedasticity (across
observations—not efficient GMM; however, it’s fine
with heteroscedasticity across equations).

e Validity under serial correlation???

e Watch out: this isn’t actually valid, since re-
stricted and unrestricted estimation will use a dif-
ferent weighting matrix; however, we often com-
ment that this isn’t valid, but use it anyway since
that’s the best output available.

. 2SLS (multiple-equation):
~9 —1

e QP |e
it
Reported value is usually e/(I® P;)e; no normalization
can get us a usable distance function.

o [nvalid under heteroscedasticity (across
observations—not efficient GMM; however, it’s
fine with heteroscedasticity across equations).

e [nwalid if errors are correlated across equations
(i-e., Phi is not a diagonal matrix)

e Validity under serial correlation???

e I don’t think any of the regression programs actu-
ally give this output (they typically give e/ (IQ P; )e;
maximizing this objective function gives the same
estimator, but not the same maximized objective
function); thus we can’t do LR testing here here,
even though it may be theoretically valid.

6. 3SLS: /(-1 @ P.)e

Reported value is usually as desired; no normalization
is needed.

o Invalid under heteroscedasticity (across
observations—not efficient GMM; however, it’s
fine with heteroscedasticity across equations).

e Validity under serial correlation???

e Watch out: this isn’t actually valid, since re-
stricted and unrestricted estimation will use a dif-
ferent weighting matrix; however, we often com-
ment that this isn’t valid, but use it anyway since
that’s the best output available.



Multiple equation systems

1. Structural equation: can have multiple endogenous
variables; typically written as explicitly solved for one
endogenous variable.

2. Reduced form equation: only one endogenous vari-
able per equation (and one equation per endogenous
variable).

Instruments

1. Must be correlated with endogenous variable and un-
correlated with error.

2. Typically things that are predetermined—not meant
technically, they were actually determined before the
endogenous variable.

3. Predetermined variables, lagged endogenous variables,
interactions of the above.

4. In 2SLS, check the quality of instruments’ correlation
with endogenous variable (note this does not check the
lack of correlation with error) by looking at the first
stage regression:

e R?
e t-statistics on each instrument;

e F-statistic for model as a whole, and potentially
F-statistic on excluded instruments.

Omitted variables

When we get asked to find out what happens if variables are
excluded (i.e., an incorrectly specified model is estimated), a
good tool is the Frisch-Waugh Theorem.

Finding probability limits/showing consistency

1. Solve as explicit function of data and use LLN with
CMT /Slutsky.

2. Solve as explicit function of data and show bias — 0
and variance — 0.

3. Solve explicitly, find the probability that |é — 6| < ¢,
and show the limit of this probability is 1 (per C&B
468).

4. MaCurdy: if the estimator is defined by Lp(f) =
23, 1(0) = 0, show that l;(6p) ~ niid(0), and that
it satisfies an LLN so that Ly(6p) = 0.

5. MaCurdy: if the estimator is defined by minimiz-
ing Hy(0)'MpHr(0) with Hp = £ 3, ht, show that
h¢(6o) ~ niid(0), and that it satisfies an LLN so that
Hr(60) 2 0.

6. Aprajit/Hayashi: general consistency theorems with
and without compact parameter space.

Finding asymptotic distributions

1. CLTs for
e iid sample
e niid sample
e ergodic stationary process
e ergodic stationary mds
o MA(o0)
2. Delta method
3. MLE is asymptotically normal with variance equal to

inverse of Fisher info (for a single observation, not joint
distribution)

Unreliable standard errors

1. Remember standard errors are asymptotic estimates ex-
cept in Gaussian OLS; therefore finite sample inference
may be inaccurate.

2. If you run a multiple-stage regression technique in sepa-
rate stages (e.g., sticking in fitted values along the way).

3. If you stick something into the regression that doesn’t
“belong” (e.g., fitted values for a DWH test—although
for some reason this one may be OK, inverse Mills for
sample selection, ...).

4. Heteroscedastic errors (when not using robust standard
errors).

5. Serially correlated errors (when not using HAC stan-
dard errors).

6. Poor instruments (see above).

7. When regression assumptions fail ( e.g., using regular
standard errors when inappropriate, failure of fourth
moment assumptions, ... ).

2 Microeconomics

2.1 Choice Theory

Rational preference relation (Choice 4; MWG 6-7) A binary rela-

tion 7 is a rational preference relation iff it satisfies

1. Completeness: Vz, y, z 7- yVy 7 = (NB: implies z - z);
2. Transitivity: Vz, y, z, (x 5 yAy = 2) = =z 2 z (which
rules out cycles, except where there’s indifference).

If 7~ is rational, then > is both irreflexive and transitive; ~
is reflexive, transitive, and symmetric; and = > y 2 2 —>
x> z.
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Choice rule (choice 6) Given a choice set B and preference rela-

tion =, choice rule C(B, ) = {zx € B: Vy € B, z 7 y}. This
correspondence gives the set of “best” elements of B.

If 7 is complete and transitive and |B| finite and non-empty,
then C(B, ) # @.

Revealed preference (Choice 6-8; Mmwa 11) We observe choices

and deduce a preference relation. Consider revealed pref-
erences C: 2B — 2B gatisfying VA, C(A) C A. Assuming
the revealed preference sets are always non-empty, there is
a well-defined preference relation 7 (complete and transi-
tive) satisfying VA, C(A,) = C(A) iff C satisfies HARP
(or WARP, and the set of budget sets contains all subsets of
up to three elements).

Houthaker’s Axiom of Revealed Preferences (Choice 6-88) A

set of revealed preferences C: 28 — 2B satisfies HARP iff
Vz, y € UNYV such that x € C(U) and y € C(V), it is also
the case that z € C(V) and y € C(U). In other words, sup-
pose two different choice sets both contain = and y; if z is
preferred to all elements of one choice set, and y is preferred
to all elements of the other, then x is also preferred to all
elements of the second, and y is also preferred to all elements
of the first.

Weak Axiom of Revealed Preference (Mmwc 10-11) Choice

structure (B,C(-))—where B is the set of budget sets—
satisfies WARP iff B, B’ € B; =, y € B; z, y € B';
xz € C(B); y € C(B’) together imply that = € C(B’).
(Basically, HARP, but only for budget sets).

Generalized Axiom of Revealed Preference (Micro P.5.1.3) A

set of revealed preferences C': A — B satisfies GARP if for
any sequences Aj,..., A, and x1, ..., Ty where

1. Vie {l,...,n}, z; € Aj;
2. Vie{l,...,n—1}, x;41 € C(A;);
3. z1 € C(An);

then z; € C(A;) for all ¢. (That is, there are no revealed
preference cycles except for revealed indifference.)

Utility function (Choice 9-13; Mwa 9) Utility function uv: X — R

represents - on X iff z Zy <= u(z) > u(y).

1. This turns choice rule into a maximization problem:
C(B,z) = argmax, ¢ s u(y).

2. A preference relation can be represented by a utility
function only if it is rational (complete and transitive).

3. If | X| is finite, then any rational preference relation
can be represented by a utility function; if | X| is infinite,
this is not necessarily the case.

4. If X CR", then 7 (complete, transitive) can be repre-
sented by a continuous utility function iff - is contin-
uous (i.e., limp—oo(@Tn,yn) = (x,y) and Vn, n 2 yn
imply 5 v).

5. The property of representing 77 on X is ordinal (i.e.,
invariant to monotone increasing transformations).



Interpersonal comparison (choice 13) It is difficult to weigh util-
ity tradeoffs between people. Two possible systems are
Rawls’ “veil of ignorance” (which effectively makes all the
choices one person’s), and a system of “just noticeable dif-
ferences” (which suffers transitivity issues).

Continuous preference (Choice 11; MWG 46-7, Micro P.S. 1-5) 2, ON
X is continuous if for any sequence {(xn,yn)}S%, with
limy oo (Tn,yn) = (z,y) and Vn, zn Z yn, we have z 2 y.
Equivalently, 7~ is continuous iff for all x, the upper and
lower contour sets of = are both closed sets. 7 is rational
and continuous iff it can be represented by a continuous util-

ity function.

Monotone preference (Choice 15-6; MWG 42-3) 27 is monotone iff
>y = z 7y (i.e., more of something is better).

(MWG uses z >y = x > y; this is not equivalent.)
Strictly /strongly monotone iff z >y = z > y.

7~ is (notes) monotone iff u(-) is nondecreasing. 7 is strictly
monotone iff u(-) monotone increasing. Strictly monotone
—> (notes or MWG) monotone. MWG monotone —>
locally non-satiated (on e.g., R}).

Locally non-satiated preference (Choice 15-6; MWG 42-3) 7 is lo-
cally non-satiated on X iff for any y € X and € > 0, there
exists ¢ € X such that ||z —y[| < e and = = y (i.e., there
are no “thick” indifference curves). 7 is locally non-satiated
iff u(-) has no local maxima in X. Strictly monotone —
MWG monotone = locally non-satiated (on e.g., R7).

Convex preference (Choice 15-6; MWG 44-5) 2 is convex on X iff
(de facto, X is a convex set, and) = = y and =’ - y together
imply that Vt € (0,1), tz+ (1 — ¢)z’ = y (i.e., one never gets
worse off by mixing goods). Equivalently, - is convex on X
iff the upper contour set of any y € X (i.e., {z € X: 2 Z y})
is a convex set. Can be interpreted as diminishing marginal
rates of substitution.

> is strictly convex on X iff X is a convex set, and = = y
and =’ = y (with © # 2’) together imply that Vt € (0,1),
te+ (1 —t)z’ > y.

7 is (strictly) convex iff u(-) is (strictly) quasi-concave.

Homothetic preference (Mmwc 45, Micro P.S. 1.6) 27 is homothetic
iff forall A >0,z 27y < Az Ay. (MWG uses VA > 0,
z~y = Axr ~ Ay.) A continuous preference relation is
homothetic iff it can be represented by a utility function that
is homogeneous of degree one (note it can also be represented
by utility functions that aren’t).

Separable preferences (Choice p.18-9) Suppose - on X XY is rep-
resented by u(z,y). Then preferences over  do not depend
on y iff there exist functions v: X - Rand U: RxY — R
such that U is increasing in its first argument and V(z,y),
u(z,y) = U(v(z),y). Note that this property is asymmet-
ric. Preferences over x given y will be represented by v(x),
regardless of y.

Quasi-linear preferences (Choice 20-1; MWG 45) Suppose 2 on
X =R X Y is complete and transitive, and that

1. The numeraire good (“good 1”) is valuable: (¢,y) =
(t',y) iff t >t

2. Compensation is possible: For every y, y’ € Y, there
exists some ¢ € R such that (0,y) ~ (¢,y');

3. No wealth effects: If (¢,y) == (¢/,y’), then for all d € R,
(t+dy) z @ +dy).

Then there exists a utility function representing - of the
form u(t,y) = t+ v(y) for some v: Y — R. (Note it can also
be represented by utility functions that aren’t of this form.)
Conversely, any preference relation 22 on X = R X Y rep-
resented by a utility function of the form u(t,y) =t + v(y)
satisfies the above conditions. (MWG uses slightly different
formulation.)

Lexicographic preferences (mwa 46) A preference relation 72 on
R? defined by (x,y) &7 (z',y") iff x > 2’ or x =2/ Ay > /.
Lexicographic preferences are complete, transitive, strongly
monotone, and strictly convex; however, they is not contin-
uous and cannot be represented by any utility function.

2.2 Producer theory

Competitive producer behavior (producer 1-2) Firms choose a
production plan (technologically feasible set of inputs and
outputs) to maximize profits. Assumptions include:

1. Firms are price takers (applies to both input and output
markets);

2. Technology is exogenously given;

3. Firms maximize profits; should be true as long as

e The firm is competitive;
e There is no uncertainty about profits;

e Managers are perfectly controlled by owners.

Production plan (producer 4y A vector y = (y1,...,yn) € R"
where an output has y; > 0 and an input has y; < 0.

Production set (Producer 4) Set Y C R™ of feasible production
plans; generally assumed to be non-empty and closed.

Free disposal (Producer5) y € Y and 3y’ <y imply ¢y’ € Y.
Shutdown (Producer 5) 0 € Y.

Nonincreasing returns to scale (Producers)y € Y implies ay €
Y for all o € [0,1]. Implies shutdown.

Nondecreasing returns to scale (pProducer 5, Micro P.8. 2-1) y € Y

implies ay € Y for all > 1. Along with shutdown, implies
that w(p) = 0 or w(p) = +oo for all p.
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Constant returns to scale (Producer 5) y € Y implies ay € Y
for all @ > 0; i.e., nonincreasing and nondecreasing returns
to scale.

Convexity (pProducer 6) y, ¥’ € Y imply ty + (1 — t)y’ € Y for all
t € [0, 1]. Vaguely “nonincreasing returns to specialization.”
If 0 € Y, then convexity implies nonincreasing returns to
scale. Strictly convex iff for ¢t € (0, 1), the convex combina-
tion is in the interior of Y.

Transformation function (producer 6, 24) A function T: R™ — R
with T(y) < 0 <= y € Y. Can be interpreted as the
amount of technical progress required to make y feasible.
The set {y: T(y) = 0} is the transformation frontier.

Kuhn-Tucker FOC gives necessary condition VT (y*) = Ap,
which means the price vector is normal to the production
possibility frontier at the optimal production plan.

Marginal rate of transformation (producer 6-7) When the
transformation function T is differentiable, MRT between

goods k and I is MRTy ;(y) = agély) agy(:)

the extra amount of good k that can be obtained per unit
reduction of good I. Equals the slope of the transformation
frontier.

. Measures

Production function (Producer 7) For a firm with only a single
output ¢ (and inputs —z), defined as f(z) = max ¢ such that
T(g,—z) < 0. Thus Y = {(q,—2): ¢ < f(2)}, allowing for
free disposal.

Marginal rate of technological substitution (producer 7)

When the production function f is differentiable, MRTS
between goods k and I is MRTSy, ;(2) = agiilz)/%(i) Mea-
sures how much of input £ must be used in place of one unit
of input [ to maintain the same level of output. Equals the

slope of the isoquant.

Profit maximization (pProducer 7-8) The firm’s optimal produc-
tion decisions are given by correspondence y: R™ =% R"™

y(p) = argmaxp-y={y€Y:p-y=n(p)}.
yey

Resulting profits are given by

m(p) = sup p-y.
yey

Rationalization: profit maximization functions (pProducer 9-
11, 13)

1. Profit function 7(+) is rationalized by production set Y
iff Vp, m(p) = supyecy p - y-

2. Supply correspondence y(-) is rationalized by produc-
tion set Y iff Vp, y(p) C argmax,cy p - y.

3. m(-) or y(-) is rationalizable if it is rationalized by some
production set.

4. 7(-) and y(-) are jointly rationalizable if they are both
rationalized by the same production set.



We seek a Y that rationalizes both y(-) and 7 (-). Consider an
“inner bound”: all production plans the firm chooses must
be feasible (Y = Upep y(p)). Consider an “outer bound”:
Y can only include points that don’t give higher profits than
w(p) (YO = {y: p-y < n(p) for all p € P}).* A nonempty-
valued supply correspondence y(-) and profit function 7(-)
on a price set are jointly rationalized by production set Y iff:

1. p-y=mn(p) for all y € y(p) (adding-up);

2. Y CY CYOQ ie, p-y < n(p) for all p, p’, and all
y' € y(p’) (Weak Axiom of Profit Maximization).

If we observe a firm’s choices for all positive price vectors on
an open convex set P, then necessary conditions for ratio-
nalizability include:

1. 7(-) must be a convex function;

2. m(-) must be homogeneous of degree one; i.e., T(Ap) =
Am(p) for all p € P and A > 0;

3. y(-) must be homogeneous of degree zero; i.e., y(Ap) =
y(p) for all p € P and A > 0.

Loss function (producer 12) L(p,y) = w(p) — p - y. This is the
loss from choosing y rather than the profit-maximizing fea-
sible production plan. The outer bound can be written
V0 = {y: inf, L(p,y) > 0}.

Hotelling’s Lemma (Producer 14) V7(p) = y(p), assuming differ-
entiable 7(-). Equivalently, V, L(p,y)|p=p = V7 (p')—y =0
for all y € y(p’). An example of the Envelope Theorem. Im-
plies that if m(-) is differentiable at p, then y(p) must be a
singleton.

Substitution matrix (Producer 15-6) The Jacobian of the optimal
supply function, Dy(p) = [0y;/0p;]. By Hotelling’s Lemma,
Dy(p) = D?n(p) (the Hessian of the profit function), hence
the substitution matrix is symmetric. Convexity of m(-) im-
plies positive semidefiniteness.

Law of Supply (pProducer 16) (p’ —p) - (y(p’) — y(p)) > 0; i.e., sup-
ply curves are upward-sloping. Law of Supply is the finite-
difference equivalent of PSD of substitution matrix. Follows
from WAPM (p - y(p) > p - y(p')).

Rationalization: y(-) and differentiable 7(-) (Producer 15)
y: P — R™ (the correspondence ensured to be a func-
tion by Hotelling’s lemma, given differentiable 7 (-)) and
differentiable w: P — R on an open convex set P C R™ are
jointly rationalizable iff

L p-y(p) = n(p) (adding-up);
2. Vr(p) = y(p) (Hotelling’s Lemma);

3. m(-) is convex.

The latter two properties imply WAPM. The second de-
scribes the FOC of the maximization problem, the third term
describes the second-order condition.

Rationalization: differentiable y(-) (Producer 16) Differentiable
y: P — R™ on an open convex set P C R" is rationalizable
iff

1. y(+) is homogeneous of degree zero;
2. The Jacobian Dy(p) is symmetric and positive semidef-

inite.

We construct 7(-) by adding-up, ensure Hotelling’s Lemma
by symmetry and homogeneity of degree zero, and ensure
convexity of 7(-) by Hotelling’s lemma and PSD.

Rationalization: differentiable 7(-) (Producer 17) Differentiable
7: P — R on a convex set P C R"™ is rationalizable iff

1. 7(-) is homogeneous of degree one;

2. m(-) is convex.

We construct y(-) by Hotelling’s Lemma, and ensure adding-
up by homogeneity of degree one; convexity of m(-) is given.

Rationalization: general y(-) and 7(:) (Producer 17-9) y: P =
R™ and w: P — R on a convex set P C R™ are jointly ratio-
nalizable iff for any selection §(p) € y(p),

L p-§(p) = n(p) (adding-up);
2. (Producer Surplus Formula) For any p, p’ € P,

1
() = m(p) + /O 0 —p) - 50+ AP —p))dN;

3. (o —p)- (9(p') — 9(p)) > 0 (Law of Supply).

Producer Surplus Formula (Producer 17-20) w(p') =
Jo @ =p) i+ —p)) dX.

w(p) +

1. “Works in the opposite direction of Hotelling’s Lemma:
it recovers the firm’s profits from its choices, rather than
the other way around.”

2. If w(-) is differentiable, integrating Hotelling’s Lemma
along the linear path from p to p’ gives PSF; however
PSF is more general (doesn’t require differentiability of

().

3. As written the integral is along a linear path, but it is
actually path-independent.

4. PSF allows calculation of change in profits when price of

good i changes by knowing only the supply function for
good ¢; we need not know the prices or supply functions

for other goods: m(p—_;,b) — w(p—i,a) = ff 9i(pi) dp;.

*If Y is convex and closed and has free disposal, and P = ]Ri \ {0}, then Y = Y©.
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Single-output case (Producer 22) For a single-output firm with
free disposal, production set described as {(q,—z2): z €
R, ¢ € [0,f(2)]}. With positive output price p,
profit-maximization requires ¢ = f(2), so firms maximize
max egm pf(2) —w- 2z, where w € R” input prices.

Cost minimization (Producer 22, Micro P.s. 2-4) For a fixed output
level ¢ > 0, firms minimize costs, choosing inputs according
to a conditional factor demand correspondence:

c(q,w) = inf  w-z;
( ) z: f(z)=2q
Z*(q,w) = argmin w -z
z: f(z)2q

{Z: f(Z) 2 4q, and w-z = C(q,’UJ)}
Once these problems are solved, firms solve maxg>0pg —
c(g, w).
By the envelope theorem, g—;(w, q) = Z*(q,w).
Rationalization: single-output cost function (producer 23, Mi-
cro P.s. 2-2) Conditional factor demand function z: R x W =
R™ and differentiable cost function ¢: R x W — R for a fixed
output g on an open convex set W C R"™ of input prices are
jointly rationalizable iff
1. ¢(g,w) = w- 2(q, w) (adding-up);
2. Vuwe(g,w) = z(q, w) (Shephard’s Lemma);
3. ¢(q,-) is concave.
Other necessary properties follow from corresponding prop-
erties of profit-maximization, e.g.,
1. ¢(g,-) is homogeneous of degree one in w;
2. Z*(q,-) is homogeneous of degree zero in w;

3. If Z*(q,-) 1is differentiable, then the
DywZ*(q,w) = D2c(q,w) is symmetric and negative
semidefinite;

matrix

4. Under free disposal, ¢(-, w) is nondecreasing in g;

5. If the production function has nondecreasing (nonin-
creasing) RTS, the average cost function c¢(g,w)/q is
nonincreasing (nondecreasing) in g;

6. If the production function is concave, the cost function
¢(q,w) is convex in q.

Monopoly pricing (mwac 384-7) Suppose demand at price p is
z(p), continuous and strictly decreasing at all p for which
z(p) > 0. Suppose the monopolist faces cost function
¢(g). Monopolist solves max, pz(p) — c(x(p)) for optimal
price, or maxg>op(q)qg — c(q) for optimal quantity (where
p(-) = z~1(-) is the inverse demand function). Further as-
sumptions:



Implicit function theorem (producer 27-8) Consider z(t)

1. p(q), c(q) continuous and twice differentiable at all
q20;

2. p(0) > ¢/(0) (ensures that supply and demand curves
cross);

3. There exists a unique socially optimal output level
q© € (0, 00) such that p(¢°) = ¢/ (q°).

A solution ¢™ € [0, ¢°] exists, and satisfies FOC p’(¢")q™ +
p(q™) = ¢'(¢™). If p'(q) < 0, then p(g™) > c'(¢™); i.e.,
monopoly price exceeds optimal price.

2.3 Comparative statics

argmax, ¢y F(x,t). Suppose:

1. F is twice continuously differentiable;
2. X is convex;

3. Fypaz < 0 (strict concavity of F in x; together with con-
vexity of X, this ensures a unique maximizer);

4. Vt, z(t) is in the interior of X.
Then the unique maximizer is given by Fy(x(¢),¢) = 0, and

| Fa(a(t),1)

T =G0

Note by strict concavity, the denominator is negative, so z’ (t)
and Fy¢(z(t),t) have the same sign.

Envelope theorem (ciayton Producer 1 6-8) Given a constrained op-

timization v(0) = max, f(x,0) such that g1(z,0) < b1; ...;
9Kk (z,0) < bg, comparative statics on the value function are
given by:

o of

80;  90;

_ oL
T 96,

K
0
DR
00;

¥ k=1

(for Lagrangian £) for all 6 such that the set of binding con-
straints does not change in an open neighborhood.

Can be thought of as application first of chain rule, and then
of FOCs.

Envelope theorem (integral form) (Clayton Producer 11 9-10)

[a.k.a. Holmstrom’s Lemma] Given an optimization v(q) =
maxz f(z,q), the envelope theorem gives us v'(q) =
fq(x(q), q). Integrating gives

oaz) = e + [ %ﬁ(szz(qm dg.
q1

Increasing differences (Producer 30-1, Micro P.s. 2-4°) F': X X T —

R (with X, T' C R) has ID (a.k.a. weakly increasing differ-
ences) iff for all 2’ > z and ¢ > t, F(2/,t') + F(z,t) >
F(z',t) + F(z,t'). Strictly/strongly increasing differences
(SID) iff F(2/,t') + F(z,t) > F(2',t) + F(x,t').

Assuming F(-,-) is sufficiently smooth, all of the following
are equivalent:

. F has ID;
. Fx(z,t) is nondecreasing in ¢ for all z;

1
2
3. Fi(z,t) is nondecreasing in z for all ¢;
4. Fpi(z,t) > 0 for all (,t);

5

. F(z,t) is supermodular.
Additional results:
1. If F(+,-) and G both have ID, then for all o, 8 > 0, the

function aF' + SG also has ID.

2. If F has ID, and g1(-) and g2(-) are nondecreasing func-
tions, then F'(g1(+),g2(-)) has ID.

3. Suppose h(-) is twice differentiable. Then h(z — t) has
ID in z, ¢ iff h(-) is concave.

Supermodularity (Producer 37) F': X — R™ on a sublattice X is

supermodular iff for all z, y € X, we have F(z Ay) + F(z VvV
y) 2 F(z) + F(y).

If X is a product set, F'(-) is supermodular iff it has ID in all
pairs (z;,2;) with ¢ # j (holding other variables z_;; fixed).

Submodularity (Producer 41) F'(-) is submodular iff —F(-) is su-

permodular.

Topkis’ Theorem (Producer 31-2, 8) If

1. F: X X T — R (with X, T C R) has ID,
2.t/ >t,
3. x € X*(t) = argmaxge x F(€,1), and 2’ € X*(t'), then

min{z,z’} € X*(t) and max{z,z’} € X*(¢). In other
words, X*(t) < X*(t') in strong set order. This implies
sup X *(-) and inf X*(-) are nondecreasing; if X*(-) is single-
valued, then X*(-) is nondecreasing.

If F: X x T — R (with X a lattice and T fully ordered) is
supermodular in = and has ID in (z,t); t' > t; and z € X*(¢)
and 2’ € X*(t'), then (xAz') € X*(t) and (zVa') € X*(t').
In other words, X*(-) is nondecreasing in ¢ in the stronger
set order.

Monotone Selection Theorem (pProducer 32) Analogue of Top-

kis’ Theorem for SID. If F': X x T'— R with X, T € R has
SID, ¢ > t, x € X*(t), and 2’ € X*(¢'), then o’ > x.
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LeChatelier principle (Producer  42-45)

Milgrom-Shannon Monotonicity Theorem (Producer 34)

X*(t) = argmax, ¢ x F(z,t) is nondecreasing in ¢ in SSO for
all sets X € R iff it has the single-crossing condition (which
is non-symmetric): for all 2’ > z and ¢/ > ¢,

v

F(z',t) > F(z,t) = F(2',t') > F(z,t'), and
F(z',t) > F(z,t) = F(z',t') > F(z,t').

MCS: robustness to objective function perturbation

(Producer  34-5) [Milgrom-Shannon)] X*(t) =
argmax ¢ y [F(z,t) + G(z)] is nondecreasing in ¢ in SSO
for all functions G: X — R iff F(-) has ID. Note Topkis
gives sufficiency of ID.

Complement inputs (Producer 40-2) Restrict attention to price

vectors (p,w) € RT‘H at which input demand correspon-
dence z(p, w) is single-valued. If production function f(z) is
increasing and supermodular, then z(p,w) is nondecreasing
in p and nonincreasing in w. That is, supermodularity of the
production function implies price-theoretic complementarity
of inputs.

If profit function 7(p,w) is continuously differentiable, then
zi(p,w) is nonincreasing in wj for all ¢ # j iff w(p,w) is
supermodular in w.

Substitute inputs (Producer 41-2) Suppose there are only two in-

puts. Restrict attention to price vectors (p, w) € Ri at which
input demand correspondence z(p, w) is single-valued. If pro-
duction function f(z) is increasing and submodular, then
z1(p, w) is nondecreasing in w2 and z2(p,w) is nondecreas-
ing in wi. That is, submodularity of the production function
implies price-theoretic substitutability of inputs in the two
nput case.

If there are > 3 inputs, feedback between inputs with un-
changing prices makes for unpredictable results.

If profit function 7(p, w) is continuously differentiable, then
zi(p, w) is nondecreasing in w; for all i # j iff 7(p,w) is
submodular in w.

Argument (a.k.a
Samuelson-LeChatelier principle) that firms react more
to input price changes in the long-run than in the short-
run, because it has more inputs that it can adjust. Does
not consistently hold; only holds if each pair of inputs are
substitutes everywhere or complements everywhere.

Suppose twice differentiable production function f(k,l) sat-
isfies either fi; > 0 everywhere, or fi; < 0 everywhere. Then
if wage w; increases (decreases), the firm’s labor demand will
decrease (increase), and the decrease (increase) will be larger
in the long-run than in the short-run.



2.4 Consumer theory

.y —VpY
Roy: e=5370w
B
spw) T u(pw)
A v=u(x)
. O3y Oy _Ohy z=h(p,v) v(p,e)=1u
Slutsky: o5, + 5w ‘1‘]_48pj h=x(p,e) e(p,v)=w

N Shephard: h=V e

Adding-up: e=p-h

Budget set (Consumer 2) Given prices p and wealth w, B(p,w) =
{zx €R}:p -z < w}

Utility maximization problem (Consumer 6-8)
max, g u(z) such that p - < w, or equivalently

1-2,

max, e B(p,w) (). Assumes:

1. Perfect information,
2. Price taking,

3. Linear prices,

4. Divisible goods.

Construct Lagrangian £ = u(z) + Mw — p - @) + >, pi®;.
If u is concave and differentiable, Kuhn-Tucker conditions
(FOCs, nonnegativity, complementary slackness) are neces-
sary and sufficient. Thus Ou/dzp < Apg with equality if
xp > 0. For any two goods consumed in positive quantities,
Pj/Pk = guu;ig;; = MRS;;. The Lagrange multiplier on the
budget constraint X is the value in utils of an additional unit
of wealth; i.e., the shadow price of wealth or marginal utility
of wealth or income.

Indirect utility function (Consumer  3-4) v(p, w)
SUP, e B(p,w) W(z). Homogeneous of degree zero.

Marshallian demand correspondence (Consumer 3-4) [a.k.a.
Walrasian or uncompensated demand] z: R? x Ry =
R? with o(p,w) = {z € B(pw): u(@) = v(p,x)} =
argmax, ¢ g(p,w) ()
1. Given continuous preferences, z(p,w) # @ for p > 0
and w > 0.
2. Given convex preferences, z(p,w) is convex-valued.

3. Given strictly convex preferences, z(p,w) is single-
valued.

4. z(p,w) is homogeneous of degree zero.
Walras’ Law (Consumer 4) Given locally non-satiated preferences:

1. For z € z(p,w), we have p-z = w (i.e., Marshallian de-
mand is on budget line, and we can replace inequality
constraint with equality in consumer problem);

2. For z € z(p) (where z(-) is excess demand z(p)
z(p,p-e) —e), we have p- z = 0;

3. v(p,w) is nonincreasing in p and strictly increasing in
w.

Expenditure minimization problem (Consumer 9) minxeRi p-
z such that u(z) > @; where @ > u(0) and p > 0. Finds the
cheapest bundle that yields utility at least u. Equivalent to
cost minimization for a single-output firm with production
function w.

If p > 0, u(-) is continuous, and 3% such that u(Z) > @, then
EMP has a solution.

Expenditure function (Consumer 9) e(p,a) = minmeRi p - x such
that u(z) > a.

Hicksian demand correspondence (Consumer 9) [a.k.a. com-
pensated demand] h: R} x Ry = R} with h(p,a) = {z €
R u(z) > 4} = argminmeki p -z such that u(z) > @.

Relating Marshallian and Hicksian demand (Consumer  10)
Suppose preferences are continuous and locally non-satiated,
and p > 0, w > 0, @ > u(0). Then:

L z(p,w) = h(p,v(p,w)),
2. e(p,v(p,w) = w,
3. h(p,u) = z(p, e(p, ),
4. v(p,e(p, ) = @.
Rationalization: h and differentiable e (Consumer 11) Hicksian
demand function h: P xRy — R} and differentiable expen-
diture function e: P x R — R on an open convex set P C R™

are jointly rationalizable by expenditure-minimization for a
given utility level @ of a monotone utility function iff:

1. e(p,u) = p - h(p,u) (adding-up—together with Shep-
hard’s Lemma, ensures e(-, %) is homogeneous of degree
one in prices);

2. Vpe(p,a) = h(p,u) (Shephard’s Lemma—equivalent to
envelope condition applied to e(p, @) = miny p - h);

3. e(-,u) is concave in prices.

Rationalization: differentiable h (Consumer 12) A continuously
differentiable Hicksian demand function h: P xRy — R’} on
an open convex set P C R"™ is rationalizable by expenditure-
minimization with a monotone utility function iff

1. Hicksian demand is increasing in u; and
2. The Slutsky matrix

Ohy (p,u) Ohn (p,u)
Op1 9p1
Dph(p7 ﬂ) = :
Ohi (p,u) Ohn (p,a)
Opn Opn

is symmetric,
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3. Slutsky matrix is negative semidefinite (since e(-, @) is
concave in prices),

4. Slutsky matrix satisfies Dph(p,@)p = 0 (ie., h(:, @ is
homogeneous of degree zero in prices).

Rationalization: differentiable = (7) Slutsky matrix can be
generated using Slutsky equation. Rationalizability requires
Marshallian demand to be homogeneous of degree 0, and
the Slutsky matrix to be symmetric and negative semidefi-
nite. [Potentially also positive everywhere and/or increasing
in w?]

Rationalization: differentiable e (7)
quires e to be:

Rationalizability re-

1. Homogeneous of degree one in prices;

2. Concave in prices;

3. Increasing in u;

4. Positive everywhere, or equivalently nondecreasing in

all prices.

Slutsky equation (Consumer 13-4) Relates Hicksian and Marshal-
lian demand. Suppose preferences are continuous and lo-
cally non-satiated, p > 0, and demand functions h(p, @) and
z(p, w) are single-valued and differentiable. Then for all 4, 7,

8$i(pv U]) _ ahi(pv u(z(p, ’LU))) _ al’i(pvw)

zj(p,w)
817]' apj Ow ]( ’ )
Total Substitution Wealth
. dw; _ Oh; _ Oz .
or more COI’lClSely7 ap] = (9])] o .'13]‘

Derived by differentiating h;(p,4) = z;(p,e(p,a)) with re-
spect to p; and applying Shephard’s lemma.

Normal good (Consumer 15) Marshallian demand z; (p, w) increas-
ing in w. By Slutsky equation, normal goods must be regular.

Inferior good (Consumer 15) Marshallian demand z;(p, w) decreas-
ing in w.

Regular good (Consumer 15) Marshallian demand z;(p,w) de-
creasing in p;.

Giffen good (Consumer 15) Marshallian demand z;(p,w) increas-
ing in p;. By Slutsky equation, Giffen goods must be infe-
rior.

Substitute goods (Consumer 15-6) Goods ¢ and j substitutes iff
Hicksian demand h;(p, @) is increasing in p;. Symmetric re-
lationship. In a two-good world, the goods must be substi-
tutes.

Complement goods (Consumer 15-6) Goods ¢ and j complements
iff Hicksian demand h;(p, @) is decreasing in p;. Symmetric
relationship.



Gross substitute (consumer 15-7) Good i is a gross substitute for
good j iff Marshallian demand x;(p,w) is increasing in p;.
Not necessarily a symmetric relationship.

Gross complement (Consumer 15-7) Good 7 is a gross complement
for good j iff Marshallian demand z;(p,w) is decreasing in
pj. Not necessarily a symmetric relationship.

Engle curve (Consumer 15-6) [a.k.a. income expansion curve] For
a given price p, the locus of Marshallian demands at various
wealth levels.

Offer curve (Consumer 16-7) [a.k.a. price expansion path] For a
given wealth w and prices (for goods other than good %) p_;,
the locus of Marshallian demands at various prices p;.

Roy’s identity (Consumer 17-8) Gives Marshallian demand from
indirect utility:

v(p, w)/Op;

w) == Av(p,w)/Ow’

z;(p,

Derived by differentiating v(p,e(p,a)) = @ with respect
to p and applying Shephard’s lemma. Alternately, by ap-

plying envelope theorem to utility maximization problem
v _ 9L

v(p,w) = maxy. po<wu(r) (giving 57 = = = A and
ov _ 9L _ _y, )
Op — Op .

Consumer welfare: price changes (Consumer 20-2, 4) Welfare
change in utils when prices change from p to p’ is v(p’, w) —
v(p,w), but because utility is ordinal, this is meaningless.
More useful to have dollar-denominated measure. So mea-
sure amount of additional wealth required to reach some ref-
erence utility, generally either previous utility (CV) or new
utility (EV).

If preferences are quasi-linear, then CV = EV.
On any range where the good in question is either normal or

inferior, min{CV,EV} < CS < max{CV,EV}.

Compensating variation (Consumer 21, 3) How much less wealth
consumer needs to achieve same utility at prices p’ as she
had at p (compensating for price change—consumer faces
both new prices and new wealth).

CV = e(p, @) — e(p’, @)

=w-— e(p/7 ﬁ)

which gives—when only price ¢ is changing—the area to the
left of the Hicksian demand curve corresponding to the old
utility v by the consumer surplus formula and Shephard’s
Lemma:

Pi Je(p,u Pi B
= / Belp.G) dp; = / hi(p, @) dp;.
v, Opi P

*Note this does not mean F =, G — F 7

~u ~v

Equivalent variation (Consumer 21, 3) How much additional ex-
penditure is required at old prices p to achieve same utility
as consumption at p’ (equivalent to price change—consumer
faces either new prices or revised wealth).

a') —e(p',a')

= 6(p, ’EL,) —w

which gives—when only price ¢ is changing—the area to the
left of the Hicksian demand curve corresponding to the new
utility «’ by the consumer surplus formula and Shephard’s
Lemma:

Pi Qe(p,u’ Pi
=/ Mdpi =/ hi(p,a’) dp;.
v} Op; P

Marshallian consumer surplus (Consumer 23-4) Area to the left
of Marshallian demand curve: CS = fppf x;(p, w) dp;.

Price index (Consumer 25-6) Given a basket of goods consumed at
quantity x given price p, and quantity =’ given price p’,

’ ’
1. Laspeyres index: 22 = P %
pey pz = cpu)

chases). Overestimates welfare effects of inflation due
to substitution bias.

(basket is old pur-

’ ’
pla’ _

= =
chases). Underestimates welfare effects of inflation.

)
2. Paasche index: e(p.iﬂ) (basket is new pur-

3. Ideal index: M
p,u)

ally either u(z) or u(x’); the percentage compensation
in the wealth of a consumer with utility 4 needed to
make him as well off at the new prices as he was at the
old ones.

for some fixed utility level @, gener-

Paasche < Ideal < Laspeyres. Substitution biases result from
using the same basket of goods at new and old prices. Include

1. New good bias,
2. Outlet bias.

Aggregating consumer demand (Consumer 29-32)

1. Can we predict aggregate demand knowing only aggre-
gate wealth (not distribution)? True iff indirect utility
functions take Gorman form: v;(p, w;) = a;(p) + b(p)w;
with the same function b(-) for all consumers.

2. Can aggregate demand be explained as though there
were a single “positive representative consumer”?

3. (If[2] holds), can the welfare of the representative con-
sumer be used as a proxy for some welfare aggregate of
individual consumers? (i.e., Do we have a “normative
representative consumer”?)

G where G is also a risky prospect—this would be a stronger version of “more risk averse.”
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2.5 Choice under uncertainty

Lottery (Uncertainty 2-4) A vector of probabilities adding to 1 as-
signed to each possible outcome (prize). The set of lotteries
for a given prize space is convex.

Preference axioms under uncertainty (uncertainty 5-6) In ad-
dition to (usual) completeness and transitivity, assume pref-
erences are:

1. Continuous: For any p, p’, p’’ € P with p = p’ = p”,
there exists « € [0,1] such that ap + (1 — a)p” ~ p'.

2. Independent:
p', p € P and a € [0,1], we have p = p’
ap+ (1 —a)p” Zap'+ (1 —a)p”.

[a.k.a. substitution axiom] For any p,
<~

Expected utility function (uncertainty 6-10) Utility function
u: P — R has expected utility form iff there are numbers
(u1,...,un) for each of the n (certain) outcomes such that
for every p € P, u(p) = >, pi - us-
Equivalently, for any p, p’ € P, a €
u(ap + (1 —a)p’) = alU(p) + (1 — a)U(p).
Unlike a more general utility function, an expected utility
functions is not merely ordinal—it is mot invariant to any
increasing transformation, only to affine transformations. If
u(-) is an expected utility representation of -, then v(-) is
also an expected utility representation of - iff 3a € R, 3b > 0
such that v(p) = a + bu(p) for all p € P.

[0,1], we have

Preferences can be represented by an expected utility func-
tion iff they are complete, transitive, and satisfy continuity
and independence (assuming |P| < oo; otherwise we also
need the “sure thing principle”). Obtains since both require
indifference curves to be parallel straight lines.

Bernoulli utility function (Uncertainty 12) Assuming prize space
X is an interval on the real line, Bernoulli utility function
u: X — R assumed increasing and continuous.

von Neumann-Morgenstern utility function (uncertainty 12)
An expected utility representation of preferences over lot-
teries characterized by a cdf over prizes X (an interval on
the real line). If F(z) is the probability of receiving less
than or equal to x, and u(-) is the Bernoulli utility function,
then vN-M utility function U(F) = [; u(z) dF (z).

Risk aversion (uncertainty 12-4) A decision maker is (strictly) risk-
averse iff for any non-degenerate lottery F(-) with expected
value Ep = [, ¢ dF (), the lottery g, which pays Ep for
certain is (strictly) preferred to F'.

Stated mathematically, [ u(z)dF(z) < u(f  dF(z)) for all
F(-), which by Jensen’s inequality obtains iff u(-) is concave.

The following notions of u(-) being “more risk-averse” then
v(-) are equivalent:

1. Flmy 0y = F 7y g for all F and z.*
2. Certain equivalent ¢(F,u) < ¢(F,v) for all F.



3. u(-) is “more concave” than v(-); i.e., there exists an
increasing concave function g(-) such that u = gowv.

4. Arrow-Pratt coefficient A(z,u) > A(z,v) for all .

Certain equivalent (Uncertainty 13-4) ¢(F,u) is the certain pay-
out such that d.(p) ~u F, or equivalently u(c(F,u)) =

fR x) dF'(x). Given risk aversion (i.e., concave u), c(F,u) <

Absolute risk aversion (uUncertainty 14-6) For a twice differen-
tiable Bernoulli utility function u(-), the Arrow-Pratt coeffi-
cient of absolute risk aversion is A(z) = —u'/(z)/u'(z).

u(+) has decreasing (constant, increasing) absolute risk aver-
sion iff A(x) is decreasing (...) in . Under DARA, if T will
gamble $10 when poor, I will gamble $10 when rich.

Since R(z) = zA(x), we have IARA =—> IRRA.

Certain equivalent rate of return (Uncertainty 16) A propor-
tionate gamble pays tx where t is a non-negative random
variable with cdf F'. The certain equivalent rate of return is
cr(F, z,u) = { where u(tz) = [ u(tz) dF(t).

Relative risk aversion (uUncertainty 16) For a twice differentiable
Bernoulli utility function u(-), the coefficient of relative risk
aversion is R(z) = —zu” (z) /v (z) = zA(x).

u(-) has decreasing (constant, increasing) relative risk aver-
sion iff R(z) is decreasing (...) in z. An agent exhibits
DRRA iff certain equivalent rate of return cr(F, x) is increas-
ing in . Under DRRA, if I will invest 10% of my wealth in
a risky asset when poor, I will invest 10% when rich.

Since R(z) = zA(x), we have DRRA =—> DARA.

First-order stochastic dominance (Uncertainty 17-8) cdf G first-
order stochastically dominates cdf F' iff G(z) < F(z) for all
T.

Equivalently, for every nondecreasing function u: R — R,
Ju(x) dG(z) > [u(z)dF(z).

Equivalently, we can construct G as a compound lottery
starting with F' and followed by (weakly) upward shifts.

Second-order stochastic dominance (Uncertainty 18-21) cdf G
second-order stochastically dominates cdf F' (where F' and
G have the same mean*) iff for every =z, ffoo Gy)dy <

JZ o Fy) dy.

Equivalently, for every (nondecreasing”)
u: R = R, fu(z)dG(z) > [u(z)dF(z).

Equivalently, we can construct F' as a compound lottery
starting with G and followed by mean-preserving spreads.

concave function

Demand for insurance (Uncertainty 21-3) A risk-averse agent
with wealth w faces a probability of p of incurring a loss
L. She can insure against this loss by buying a policy that
will pay out a in the event the loss occurs, at cost qa.

If insurance is actuarially fair (¢ = p), the agent fully insures
(a* = L) for all wealth levels. If p < g, the agent’s insurance
coverage a* will decrease (increase) with wealth if the agent
has decreasing (increasing) absolute risk aversion.

Portfolio problem (Uncertainty 23-5) A risk-averse agent with
wealth w must choose to allocate investment between a
“safe” asset that returns r and a risky asset that pays re-
turn z with cdf F.

If risk-neutral, the agent will invest all in the asset with
higher expected return (r or Ez). If (strictly) risk-averse,
she will invest at least some in the risky asset as long as
its real expected return is positive. (To see why, consider
marginal utility to investing in the risky asset at investment
a=0.)

If w is more risk-averse than v, then u will invest less in the
risky asset than v for any initial level of wealth. An agent
with decreasing (constant, increasing) absolute risk aversion
will invest more (same, less) in the risky asset at higher levels
of wealth.

Subjective probabilities (Uncertainty 26-8) We relax the assump-
tion that there are objectively correct probabilities for var-
ious states of the world to be realized. If preferences over
acts (bets) satisfy a set of properties “similar in spirit” to
the vN-M axioms (completeness, transitivity, something like
continuity, the sure thing principle, and two axioms that have
the flavor of substitution), then decision makers’ choices are
consistent with some utility function and some prior proba-
bility distribution (Savage 1954).

Savage requires an exhaustive list of possible states of the
world. No reason to assume different decision makers are us-
ing the same implied probability distribution over states, al-
though we often make a “common prior” assumption, which
implies that “differences in opinion are due to differences in
information.”

2.6 General equilibrium

Walrasian model (G.e. 34, 5) An economy & = ((u},e?);e7)

comprises:

1. L commodities (indexed | € £ = {1,...
2. I agents (indexed 1 € Z={1,...,

,L));
I)), each with
e Endowment e* € RL | and
o Utility function u’: ]RJLr — R.
Given market prices p € RI each agent chooses con-

sumptlon to maximize utility given a budget constraint:
X epl U t(z) such that p -z < p-e’, or equivalently

pEBz(p)={x~p z<p-e'l}

We often assume (some or all of):

*If EF > E G, there is always a concave utility function that will prefer F to G.
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1. Vi, u’(+) is continuous;

2. Vi, u() is increasing; i.e., u’(z’) > wu?(x) whenever
' > x;

3. Vi, u’(-) is concave;

4. Vi, e* > 0;

Walrasian equilibrium (G.E. 4, 17, 24-9) A WE for economy & is
a vector of prices and allocations (p, (z*);ez) such that:

1. Agents maximize their utilities: max,cpi(,) u'(x) for
all i € 7,

2. Markets clear: Y, @i = Y, 7€l forall l € L, or
equivalently >, .y ot =3, 7 €.

Under assumptions 1-4 above, a WE exists (proof using fixed
point theorem). WE are not generally unique, but are locally
unique (and there are an odd number of them). Price ad-
justment process (“tatonnement”) may not converge to an
equilibrium.

Feasible allocation (c.k. 4) An allocation (x%);e7 € Rer is fea-
sible iff Y2, 72t < 3, 7 €.

Pareto optimality (c.E.5) A feasible allocation z = (z%);cz for
economy & is Pareto optimal iff there is no other feasible al-
location & such that u?(2?) > u?(z?) for all i € Z with strict
inequality for some ¢ € 7.

Edgeworth box (G.E. 6-10) Graphical representation of the two-
good, two-person exchange economy. Bottom left corner is
origin for one consumer; upper right corner is origin for other
consumer (with direction of axes reversed). Budget line has
slope —p1/p2, and passes through endowment e.

1. Locus of Marshallian demands for each consumer as rel-
ative prices shift is her offer curve. WE are intersec-
tions of the two consumers’ offer curves.

2. Set of PO allocations is locus of points of tangency be-
tween the two consumers’ indifference curves, generally
a path from the upper right to lower left of the Edge-
worth box.

3. Portion of Pareto set that lies between the indifference
curves that pass through e is the contract curve: PO
outcomes preferred by both consumers to their endow-
ments.

First Welfare Theorem (c.E. 11) If Vi, u?(-) is increasing (i.e.,
ui(z') > ui(x) whenever z’ > ) and (p, (x?);cz) is a WE,
then the allocation (z%);c7 is PO. Note implicit assumptions

such as

1. All agents face same prices;

2. All agents are price takers;

3. Markes exist for all goods, and individuals can freely
participate;



4. Prices are somehow arrived at.

Proof by adding results of Walras’ Law across consumer at
potentially Pareto-improving allocation. Result shows that
allocation cannot be feasible.

Second Welfare Theorem (c.E. 11-3) If allocation (e?);cz is PO
and

1. Vi, ui(-) is continuous;

2. Vi, u(:) is increasing; i.e., u®(z’) > wu’(x) whenever

z' > x;
3. Vi, u(-) is concave;
4. Vi, e* > 0;
then there exists a price vector p € Ri such that (p, (e*)ic1)
is a WE.

Note this does not say that starting from a given endowment,
every PO allocation is a WE. Thus decentralizing a PO al-
location is not simply a matter of identifying the correct
prices—large-scale redistribution may be required as well.

Proof by separating hyperplane theorem. Consider the set
of changes to total endowment that strictly improve every
consumer’s utility; by concavity of u?(-), this set is convex.
Separate this set from 0, and show that the resulting prices
are nonnegative, and that at these prices, e’ maximizes each
consumer’s utility.

Excess demand (k. 18) 2*(p) = 2*(p,p-e’) — e?, where _zi is the
agent’s Marshallian demand. Walras’ Law gives p-z*(p) = 0.

Aggregate excess demand is z(p) = 3,7 2 (p). If 2(p) =0,
then (p, (z'(p,p- €%))icz) is a WE.

Sonnenschein-Mantel-Debreu Theorem (c.E. 30) Let B C
Ri_‘_ be open and bounded, and f: B — R be continu-
ous, homogeneous of degree zero, and satisfy p - z(p) = 0 for
all p. Then there exist an economy £ with aggregate excess
demand function z(p) satisfying z(p) = f(p) on B.

Interpretation is that without special assumptions, pretty
much any any comparative statics result could be obtained
in a GE model. However, Brown and Matzkin show that if
we can observe endowments as well as prices, GE may be
testable.

Gross substitutes property (c.E. 32-5) A Marshallian demand
function z(p) satisfies the gross substitutes property if for
all k, whenever pj > py and p’ , = p_j, then z_4(p') >
z_k(p); i.e., all pairs of goods are (strict) gross substitutes.
Implies that excess demand function satisfies gross substi-
tutes. If every individual satisfies gross substitutes, then so
does aggregate excess demand.

If aggregate excess demand satisfies gross substitutes,

1. The economy has at most one (price-normalized) WE.

2. If z(p*) = 0 (i.e., p* are WE prices), then for any p not
colinear with p*, we have p* - z(p) > 0.

3. The tatonnement process g—z = az(p(t)) with o > 0
converges to WE prices for any initial condition p(0).

4. Any change that raises the excess demand for good k
will increase the equilibrium price of good k.

Incomplete markets (jackson) Under incomplete markets, Wal-
rasian equilibria may:

1. Fail to be efficient, and even fail to be constrained ef-
ficient (i.e., there may be more efficient outcomes that
are feasible under restricted trading regime);

2. Fail to exist (“although only rarely”);
3. Have prices/trades that depend on the resolution of un-

certainty.

Rational expectations equilibrium (jackson) Suppose [ (prim-
itive) goods, state space S (with |S| < o0), and n agents
each of whom has

e endowment e;: S — Ri,

o preferences u;: Ry x S — R,
e information I; (including information contained in e;

and u;).

The allocations z;: S — IRQ_ (or equivalently z; € Rf”)
and prices p: S — Rl_,_ are an REE iff:

1. Information revelation: x; is measurable with respect
to I; V Iprices for all ;
2. Market clearing: >, x;(s) < Y, ei(s) for all s € S

3. Optimizing behavior: z;(s) € argmax, u;[z;(s)] such
that z; is measurable with respect to I; V Irices and
p(s) - zi(s) < p(s) - e;(s) for all 4.

2.7 Games

Game tree (Bernheim 2-5) Description of a game comprising:

. Nodes,

. A mapping from nodes to the set of players,

. Branches,

A mapping from branches to the set of action labels,

. Precedence (a partial ordering),

S N

. A probability distribution over branches for all notes
that map to nature.

We assume:

1. There is a finite number of nodes;
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2. There is a unique root—a node that has no predecessors
and is a predecessor for everything else;

3. There is a unique path (following precedence) from the
root to each terminal node (those nodes without suc-
Cessors).

We also add:

1. Information: a partition over the set of nodes such that
e The same player makes the decisions at all nodes
within any element of the partition;
e The same actions are available at all nodes within
any element of the partition;
e No element of the partition contains both a node
and its predecessor.
2. Payoffs: a mapping from terminal nodes to a vector of
utilities.

Perfect recall (Bernheim 6) Informally, a player never forgets ei-
ther a decision he made in the past or information that he
possessed when making a previous decision.

Perfect information (Bernheim 7) Every information set is a sin-
gleton.

Complete information (Bernheim 13, 73-4) Each player knows the
payoffs received by every player at every terminal node.

Per Harsanyi, a game of incomplete information can be writ-
ten as a game of imperfect information by adding nature as a
player whose choices determine hidden characteristics. The
probability governing Nature’s decisions is taken to be com-
mon knowledge. NE of this “Bayesian game” is a Bayesian
NE.

Strategy (Bernheim 7-8) A mapping that assigns a feasible action to
all information sets for which a player is the decision-maker
(i.e., a complete contingent plan). Notation is:

1. S; the set of player i’s feasible strategies;
2. S= ]_[j S; the set of feasible strategy profiles;

3. S = Hj# S; the set of feasible strategy profiles for
every player but i.

Payoff function (Bernheim 8) g;: S — R gives player ¢’s expected
utility if everyone plays according to s € S.

Normal form (Bernheim 8) A description of a game as a collection
of players {1,...,I}, a strategy profile set S, and a payoff
function g: S — RT where g(s) = (g1(s), - .-, gr(s)).

Revelation principle (Bernheim 79) In a game with externali-
ties, when the mechanism designer doesn’t have information
about preferences, agents will have an incentive to under-
state or exaggerate their preferences. The revelation princi-
ple states that in searching for an optimal mechanism within
a much broader class, the designer can restrict attention to
direct revelation mechanisms (those that assume agents have
revealed their true preferences) for which truth-telling is an
optimal strategy for each agent.



Proper subgame (Bernheim 91) Consider a node ¢ in an extensive

form game, with information set h(t) and successors S(t).
Then {t} US(t) (along with associated mappings from infor-
mation sets to players, from branches to action labels, and
from terminal notes to payoffs) is a proper subgame iff

1. h(t) = {t} (the information set for ¢ is a singleton); and

2. Vt' € S(t), we have h(t') C S(t) (every player knows we
are at t).

System of beliefs (Bernheim 94) Given decision nodes X, infor-

mation sets H, including the information set h(t) contain-
ing t € X, and ¢(h) the player who makes the decision at
information set h € H, a system of beliefs is a mapping
p: X — [0,1] such that Vh € H we have 3, o, u(t) = 1.
That is, a set of probability distributions over nodes in each
information set.

Strictly mixed strategy (Bernheim 98) Behavior strategy profile

¢ is strictly mixed if every action at every information set is
selected with strictly positive probability.

Note since every information set is reached with strictly pos-
itive probability, one can completely infer a system of beliefs
using Bayes’ rule.

2.8 Dominance

Dominant strategy (Bernheim 13) s; is a (strictly) dominant

strategy iff for all § € S with §; # s;, we have g;(s;,5-;) >
9i(3i,8-4).

Dominated strategy (Bernheim 15) s; is a (strictly) dominated

strategy iff there exists some probability distribution p over

Si = {szl, .. .,sy} such that for all s_; € S_;, we have
M
Do P gi(sT s—i) > i(3is8-4)-
m=1

Iterated deletion of dominated strategies (Bernheim 15-6) We

iteratively delete (strictly) dominated strategies from the
game. Relies on common knowledge of rationality (i.e., ev-
eryone is, everyone knows, everyone knows everyone knows,
...). If this yields a unique outcome, the game is “dominance
solvable.” The order of deletion is irrelevant.

For two player games, strategies that survive iterative dele-
tion of dominated strategies are precisely are precisely the
set of rationalizable strategies. This equivalence holds for
games with more than two players only if we do not insist on
independence in defining rationalizability; if we do insist on
independence, the set of rationalizable strategies is smaller.

Weakly dominated strategy (Bernheim 20) §; is a weakly domi-

nated strategy iff there exists some probability distribution p
over S; = {s},...,sM} such that for all s_; € S_;, we have

M
> pMgi(sis-0) > gi(8i,5-4),
m=1

with strict inequality for some s_; € S_;.

We cannot iteratively delete weakly dominated strategies;
unlike for strict domination, the order of deletion matters.

2.9 Equilibrium concepts

PSNE C rationalizable C ISD. Rationalizable strategies are
a best response based on some prior. PSNE are best re-
sponses based on a common prior.

Normal form equilibrium concepts (static games): THPE C
MSNE; PSNE C MSNE; MSNE are made up of rationaliz-
able strategies. BNE are MSNE of “extended game” that
includes nature choosing types.

Extensive form equilibrium concepts (dynamic games)*:

MSNE

PBE
SE

Rationalizable strategy (Bernheim 27)

1. A 1l-rationalizable strategy is a best response to some
(independent) T probability distribution over other play-
ers’ strategies.

2. A k-rationalizable strategy is a best response to some
(independent) probability distribution over other play-
ers’ (k — 1)-rationalizable strategies.

3. A rationalizable strategy is k-rationalizable for all k.

For two player games, rationalizable strategies are precisely
those that survive iterative deletion of dominated strategies.
This equivalence holds for games with more than two play-
ers only if we do not insist on independence in defining ra-
tionalizability; if we do insist on independence, the set of
rationalizable strategies is smaller.

Pure strategy Nash equilibrium (Bernheim 20-33) s* € S is a

PSNE iff for all s € S, we have g;(s},s*,) > gi(si,s*;).
The strategies played in a PSNE are all rationalizable.

A finite game of perfect information has a PSNE [Zermelo].
Proved using backwards induction.

If Sq1,...,Sr are compact, convex Euclidean sets and g; is
continuous in s and quasiconcave in s;, then there exists a
PSNE. By Berge’s Theorem, the best response correspon-
dence is upper hemi-continuous. By quasiconcavity of g;,
the best response correspondence is convex valued. Thus by
Kakutani’s Fixed Point Theorem, it has a fixed point.

Mixed strategy Nash equilibrium (Bernheim 56-9) We define a

new game where the strategy space is the set of probability
distributions over (normal form) strategies in the original
game (i.e., the set of mized strategies). A MSNE of the
original game is any PSNE of this new game. Players must
be indifferent between playing any strategies included (with
strictly positive probability) in a MSNE.

Another approach is to consider randomization over ac-
tions at each information set (behavior strategies). However,
Kuhn’s Theorem assures us that for any game of perfect
recall there are mixed strategies that yields the same dis-
tribution over outcomes as any combination of behavioral
strategies; also it gives that there are behavioral strategies
that yield the same distribution over outcomes as any com-
bination of mixed strategies.

Every finite game has a MSNE.

Trembling-hand perfection (Bernheim 65-7) There is always

some risk that another player will make a “mistake.” Bern-
heim notes include two equivalent rigorous definitions; origi-
nal definitions are for finite games, but there is an extension
available for infinite games. Key notes:

1. In a THPE, no player selects a weakly dominated strat-
egy with positive probability.

2. For two player games, an MSNE is a THPE iff no player
selects a weakly dominated strategy with positive prob-
ability.

3. For more than two player games, the set of THPE may
be smaller than the set of MSNE where no player selects
a weakly dominated strategy with positive probability;
if we allow correlations between the trembles of different
players, the sets are the same.

Correlated equilibrium (Bernheim 70) In a finite game

({Si}!_,,g), a probability distribution §* over S is a CE iff
for all 4 and s; chosen with strictly positive probability, s;
solves

max Es_, (s}, s—:)[s:,6"];

S;ES;
i.e., player i has no incentive to defect from any strategy s;,
assuming that other players respond per §*.

*Unclear whether PBE is the intersection of WPBE and SPNE, or a subset of the intersection.
TQucstion is whether to allow other players’ randomized strategies to be correlated with each other.
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Bayesian Nash equilibrium (Bernheim 73-4) Per Harsanyi, we
write our game of incomplete information as a game of imper-
fect information where nature selects hidden characteristics.
A BNE is a MSNE of this “Bayesian game.” A pure strategy
BNE is a PSNE of the Bayesian game.

Characterized by a set of decision rules that determine each
player’s strategy contingent on his type.

Subgame perfect Nash equilibrium (Bernheim 92) A MSNE in
behavior strategies ¢* is a SPNE iff for every proper sub-
game, the restriction of 6* to the subgame forms a MSNE in
behavior strategies.

For finite games, we can find SPNE using backwards induc-
tion on subgames of extensive form.

A SPNE need not be a WPBE, and a WPBE need not be a
SPNE.

Sequentially rational strategy (Bernheim 94) Behavior strategy
profile ¢ is sequentially rational given a system of beliefs p
iff for all information sets h € H, the actions for player ¢(h)
at h U [U,cp, S(t)] are optimal starting from h given an ini-
tial probability over h governed by u, and given that other
players will adhere to 6_4p)-

Weak perfect Bayesian equilibrium (Bernheim 93-5) Implausi-
ble equilibria can still be SPNE, because we lack beliefs at
each information set. Behavior strategy profile 6* and sys-
tem of beliefs p* are a WPBE iff:

1. 6* is sequentially rational given beliefs p*, and

2. Where possible, u* is computed from 6* using Bayes’
rule; i.e., for any information set h with Pr(h|6*) > 0,
for all t € h,

Pr(t|6*)

O Bl

Note only restriction on out-of-equilibrium beliefs is that
they exist. A SPNE need not be a WPBE, and a WPBE
need not be a SPNE.

Perfect Bayesian equilibrium (Bernheim 93-5) (6%, u*) is a PBE
if it a WPBE in all proper subgames. This ensures it is also
a SPNE.

Consistent strategy (Bernheim 98) Behavior strategy profile § is
consistent given a system of beliefs p iff there exists a se-
quence of strictly mixed behavior strategy profiles d, — 0
such that pn, — p, where p, is generated from 4, by Bayes’
rule.

Sequential equilibrium (Bernheim 98) (6%, u*) is a SE if it is se-
quentially rational and consistent.

SE places additional restriction on beliefs vs. WPBE, hence
SE C WPBE; also, can show that SE are SPNE, so an SE is
also a PBE.

Extensive form trembling hand perfection (Bernheim 102-5)
“Agent normal form” is the normal form that would obtain
if each player selected a different agent to make her decisions
at every information set, and all of a player’s agents acted
independently with the object of maximizing the player’s
payoffs. An EFTHPE is a THPE in the agent normal form
of the game.

EFTHPE C SE; for generic finite games, they are the same.

2.10 Basic game-theoretic models

Other models and examples are throughout Bernheim lecture
notes.

Cournot competition (Bernheim 11, 46-50) Firms simultaneously
choose quantity. Inverse demand is P(Q) (monotonically de-
creasing); cost to firm ¢ of producing quantity g¢; is ¢;(g;)
where ¢;(0) = 0. Normal form:

1. Strategies: S =R ;
2. Payouts: g;(s) = P(3; s;j)si — ¢i(s4)-

To ensure PSNE existence, we need quasiconcavity of g; in
si (generally don’t worry about unboundedness of strategy
set). Sufficient conditions are ¢;(-) convex and P(-) concave.
The former rules out increasing returns to scale. The latter
“is not a conventional property of demand functions, but is
satisfied for linear functions.”

Note:
1. Characterized by strategic substitutes; i.e., best re-
sponse curves are downward sloping.
2. Production is spread among firms.
Bertrand competition (Bernheim 11, 37) Firms simultaneously
choose price; consumers purchase from low-price firm. De-
mand is Q(p) (monotonically decreasing); cost to firm i of

producing quantity ¢; is ¢;(¢g;) where ¢;(0) = 0. Normal form
(two-firm case):

1. Strategies: S = Rﬂr;

2. Payouts:
0, S > S_i;
gi(s) = § 5:Q(s:) — ci(Q(s4)), 8¢ < S
5[5:Q(si) — ci(Q(s0))], 80 = s
Note:

1. One firm case is monopoly (in which case demand mat-
ters); more than one yields perfectly competitive out-
come since only the marginal cost of the second-most
efficient firm matters—the properties of the demand
curve are then irrelevant.
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2. Characterized by strategic complements; i.e., best re-
sponse curves are upward sloping.

3. All production is done by most efficient firm.

Bertrand competition—non-spatial differentiation
(Bernheim 38-40) Firm ¢ chooses price for good i. Demand
for good i is given by Q(pi,p—1). Strategic complements;
i.e., best response curves are upward sloping.

Bertrand competition—horizontal differentiation
(Bernheim 40-2) a.k.a. Hotelling spatial location model. Con-
sumers are indexed by 6 € [0, 1], representing location. Each
consumer purchases zero or one unit, with payoff 0 if no
purchase, and v — p; — t(x; — 6)? from purchasing a type x;
good at price p;. v is value of good, t is unit transport cost.

If firms cannot choose product type x;, prices are strategic
complements; i.e., best response curves are upward sloping.

Bertrand competition—vertical differentiation (Bernheim
42-5) Consumers are indexed by 6 € [0, 1], representing value
attached to quantity. Each consumer purchases zero or
one unit, with payoff 0 if no purchase, and 6v; — p; from
purchasing a quality z; good at price p;.

Sequential competition (Bernheim 107-12) First one firm selects
price/quantity, then the other firm follows. The leader al-
ways does (weakly) better than in the simultaneous choice
model; whether the follower does better or worse than in si-
multaneous choice depends whether there are strategic com-
plements or substitutes. This also determines which firm
does better in the sequential choice model.

Herfindahl-Hirshman index (Bernheim 37) H = 10000 x >, a?,
where «a; is the market share of firm 7. When all N firms
evenly split market, H = 10000/N.

U
. el (as
Lerner index (Bernheim 37) £ = Y., a;L;, where £; = Pizci(9i)
g ’ Pi
is firm ¢’s margin and «; is the market share of firm 3.

Monopolistic competition (Bernheim 135-8)

1. Products are distinct, and each firm faces a downward-
sloping demand curve;

2. The decisions of any given firm have negligible effects on
any other firm (note this does not hold for the Hotelling
model, where firms have a measurable effect on their
neighbors);

3. There is free entry, with zero profits.
Can formalize as a vector of N differentiated commodities

(for N large) and a numeraire good y, where representative
consumer has utility

N
u(z,y) =y + g(z f(m))

i=1



and the curvature of f(-) gives the extent of substitutability
of the goods.

Relationship between equilibrium variety and optimal vari-
ety is dictated by:

1. When a product is added, revenues generated fall short
of incremental consumer surplus because firms can’t
perfectly price discriminate; this biases towards too lit-
tle entry.

2. Firms don’t take into account the effect of introducing
a product on the profits of others; if goods are substi-
tutes, this biases towards too much entry.

If goods are complements, these biases reinforce and we have
too little variety relative to social optimum.

Entry deterrence (Bernheim ) An incumbent can take some ac-

tion with long-term commitment prior to the arrival of an
entrant that makes entry less attractive. For example:

1. Selecting to produce a middle-of-the-road product
(Hotelling model); note the deterrent action is the same
as what the firm would do if it faced no entry with cer-
tainty (entry is “blockaded.”)

2. Producing a proliferating range of products (e.g., RTE
cereal).

3. Preemptive investment in production capacity; shifts a
portion of marginal cost to a sunk cost. Note entrant
may also limit capacity to reduce threat to incumbent.

Vickrey auction (Bernheim 22-3, 82-3) a.k.a. second-price auction.

I bidders simultaneously submit sealed bids for an item that
each values at v;. Winning bidder pays second highest bid.
Bidding p; = v; weakly dominates any other pure strategy,
and is not weakly dominated by any other strategy. Analysis
does not depend on complete vs. incomplete information—
everyone bidding their valuation is a BNE.

First-price sealed bid auction (Bernheim 83-7) I bidders simul-

taneously submit sealed bids for an item that each values at
v;. Winning bidder pays his own bid. Symmetric BNE gives
a decision rule where each bids below his valuation.

Realized revenues typically differ from Vickrey (second-price
sealed bid) auction, but expected revenue is the same given
independent private valuations (per the revenue equivalence
theorem).

English auction (Bernheim 87) a.k.a. ascending price auction

Posted price of good is slowly increased until only one bid-
der remains. Staying in until posted price exceeds valuation
is a weakly dominated strategy; outcomes are equivalent to
Vickrey (second-price sealed bid) auction.

Dutch auction (Bernheim 87) a.k.a. descending price auction

Posted price of good is slowly decreased until a bidder buys.
Outcomes are equivalent to first-price sealed bid auction.

Public good (Bernheim 51-4) A non-rival and non-excludable good.

Spence signaling model (Bernheim 218-35) Workers choose edu-

cation level; education does nothing for worker’s productiv-
ity, but is less costly on margin for more productive workers.
All workers have same outside opportunities. Three types of
WPBE:

1. Separating equilibria: different types choose different
education levels.

2. Pooling equilibria: different types choose same educa-
tion levels. (Note pooling equilibria with strictly posi-
tive levels of education are highly inefficient—education
adds nothing to productivity nor does it differentiate
workers.)

3. Hyprids: some members of differently-typed groups
pool, others separate.

Equilibrium satisfies equilibrium dominance condition a.k.a.
the “intuitive criterion” iff whenever an individual gets some
level of education that no one should in equilbrium, no
low-productivity worker should ever choose, and some high-
productivity worker could conceivably choose, the firm as-
sumes he is a high-productivity worker with certainty.

2.11 Repeated games with complete infor-
mation

Infinitely repeated game (Bernheim 164-5) A supergame formed

by (potentially) infinite repetitions of some stage game (i.e.,
the game played in each period). Note there need not ac-
tually be infinite repetitions, but there must be a nonzero
possibility in each stage that the game will continue.

Given absence of terminal nodes, need mapping from strate-
gies to expected payoffs, e.g.,

1. Discounted payoffs: u;(vi) = > 52, 8'v;(t), where the
discount factor may reflect both time preference and the
probability of continuation.

2. Average payoffs: u;(v;) = limp_, % Z?:l v (t).

3. Overtaking criterion: a strategy is preferred iff there is
some T beyond which all partial sums of stage game
payoffs exceed the corresponding partial sum for other
strategies; n.b., only a partial ordering.

Feasible payoff (Bernheim 169-70) The convex hull of payoff vectors

from pure strategy profiles in the stage game. Note this is
potentially larger than the set of payoffs achievable through
mixed strategies, since we allow for correlations.

Individually rational payoff (Bernheim 170-1) (Stage game) pay-

off vectors where each player receives at least his minmax
payoff

m

T

= min max 7;(9).
" = min macrs(9)

—1
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Folk Theorem (Bernheim 171-2, 5, 7-8) Consider a supergame

formed by repeating a finite stage game an infinite number
of times; suppose players use the average payoff criterion.
Then the set of feasible and individually rational payoffs is
precisely the set of average payoffs for Nash equilibria (which
need not be SPNE).

1. “Anything can happen;” this makes comparative statics
are problematic.

2. Inability to write binding contracts is not very dam-
aging; anything attainable through a contract can also
be obtained through some self-enforcing agreement (if
there is no discounting).

For discounted payoffs, all feasible payoffs that strictly ex-
ceed minmax payoffs for every player are the average payoff
for some NE and all discount rates sufficiently close to 1.

Subject to some technical conditions, versions of the folk
theorem (with and without discounting) hold for SPNE.

Nash reversion (Bernheim 176-7) a.k.a. “grim trigger” strategy.

Players attempt to support cooperation, reverting to a static
(stage-game) equilibrium as punishment if someone deviates.
If a Nash reversion strategy is a NE, then it is a SPNE.

Finitely repeated game (Bernheim 179-80) If there is a unique (up

to payoffs) NE for the stage game, there is a unique SPNE
for the repeated game, consisting of the repeated stage game
equilibrium. However, cooperation may be possible when the
stage game has multiple NE.

Stick-and-carrot equilibrium (Bernheim 185-6) If a firm strays

from the (cooperative) equilibrium path, all firms including
itself punish it for one period. If any firm does not partici-
pate in the punishment (including the punished firm itself),
it gets punished again in the next period. The punishment
is the “stick;” the fact that punishment will end as soon as
the firm punishes itself is the “carrot.”

2.12 Collusion and cooperation

Core (Jackson; MWG 653-4) The core is the set of allocations not

blocked by any coalition. A coalition will block an alloca-
tion if there is some allocation feasible for the coalition such
that each member is strictly better off (“strong blocking”),
or that every member is weakly better off and some member
is strictly better off (“weak blocking”).

Core allocations must be Pareto optimal.

The set of Walrasian equilibria is a subset of the core (ba-
sically, the FWT) since there are no externalities. In other
settings, the core could be empty due to externalities.

Core convergence (Jackson; MWG 655-7) As we increase the num-

ber of “replicas” of a pure exchange economy, the core of the
replicated economy converges to (equal treatment replicas
of) the W.E. of the original economy.



Nontransferable utility game (jackson) Feasible allocations for
a coalition 7" must be listed explicitly.

Transferable utility game (jackson; Mwc 676) Feasible alloca-
tions for a coalition S are V(S) = le‘. Generally assume:

1. The normalization V(&) = 0;

2. V(I) > V(S)+V({I\S) for all I C S, where [ is the
set of all players;

3. Superadditivity (a stronger version of the prior assump-
tion): V(SUT) > V(S)+ V(T) when SNT = &.

In a TU game, an allocation can be strictly blocked iff it can
be weakly blocked; the weak and strong cores are therefore
identically

{zeR': Y 2, =V(I)and VS C 1,> z; > V(S)}.

k3

Shapley value (Jackson; MWG 673, 679-81) Given a characteristic
function V: 27 — R, the Shapley value is value function:

[SIH (] =[S =1)!

SV _
YY) = i

SCI s.t. igS

That is, the average marginal value that ¢ contributes over
all possible orderings in which members could be added to
a coalition. It is a normative allocation, and can be seen
as a positive description under certain kinds of bargaining
regimes.

The Shapley value is the unique value function satisfying:

1. Symmetry: If we relabel agents, the Shapley values are
relabeled accordingly.

2. Carrier: T C I is a carrier iff V(SNT) = V(S) for all
S C I; if T is a carrier, then ZieT o:(V) = V()
v (T).

3. Dummy: 4 is a dummy iff V(S U {i}) = V(S) for all
S C I; if i is a dummy, ¢;(V) = 0. Note Carrier —>
Dummy.

4. Additivity: ¢(V + W) = ¢(V) + ¢(W); implies that
@(AV) = Ap(V). Convenient, but not mathematically
clear why this should hold.

Simple game (jackson) A TU game where

1. V(S) € {0,1},

2. SCT = V() < V(T),
3. V(S)=1 = V(I\S) =0,
4. V(I)=1.

[V (SU{iH-V(9)].

In a simple game, 7 is a “veto player” if V(S) =1 = i€ S.
The core is nonempty iff there is at least one veto player.
Shapley values are then:
1 - .
SV _ } Zofveto players> 1S @ veto player;
i = .
0, otherwise.

If the set of veto players is a carrier, SV € core.

Convex game (Jackson; MWG 683) A TU game V(-) is convex iff
S CT and ¢ € T implies

V(SU{i}) = V() < V(T {i}) — V(T);

i.e., there are increasing marginal returns as coalitions grow.

For a convex game, the core is nonempty; the Shapley value
is in the core.

One-sided matching (Jackson) Players are each allocated one ob-
ject; each player has ordinal preferences over objects. Given
strict preferences, we can find the unique (weak) core alloca-
tion using the Top Trading Cycles algorithm:

1. Look for cycles among individuals’ top choices;
2. Assign each member of cycles her top choice;

3. Return to step 1, with already assigned individu-
als/objects removed from consideration.

We can support this core as a competitive equilibrium by as-
signing a common price to the objects in each cycle as they
are assigned. The price for cycles assigned in the same round
can vary across cycles, but must be strictly lower than the
prices for objects assigned in previous rounds.

The algorithm is strategy-proof: truth telling dominates.

Two-sided matching (jackson) Two sets M and W, which may
have different cardinalities. Every individual is either
matched to someone in the other set, or remains unmatched.

Can find two core allocations (here strict = weak) using Gale-
Shapley [a.k.a. Deferred acceptance] algorithm: Suppose M
“propose,” then

1. Each M proposes to his favorite W to whom he has not
yet proposed (unless he would prefer to stay single);

2. Each W who has been proposed to accepts her favorite
proposal (unless she would prefer to stay single)—this
could involve breaking an engagement she made in a
previous round;

3. Return to step 1, where the only unengaged M pro-
pose (i.e., those who either had a proposal rejected last
round, or had an engagement broken).

The core is a lattice; Gale-Shapley algorithm yields “best”
for proposing group (and “worst” for other group). Thus
if we get same result from M-proposing and W-proposing
algorithms, core is a singleton. Note this result relies on:
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e Two-sided matching (cf, roommate matching);
e One-to-one matching (cf, firm and workers);

e Strict preferences.

The algorithm is not strategy-proof: there may be profitable
manipulations (lying by rejecting proposals), but they are
typically difficult to implement.

2.13 Principal-agent problems

Moral hazard (sackson) “Hidden action” problems. Agent takes
(non-contractable) action e, outcome 7 has some distribu-
tion that varies based on e. Generally assume risk-neutral
principal and risk-averse (and/or liability-limited) agent, so
that optimal solution is not merely “selling the firm to the
agent.”

Principal structures optimal contract—payment w(7) as a
function of realized outcome—that, for a desired effort level
e b

1. Maximizes principal’s expected payoff: E[r —

w(m)le™];

2. Satisfies the agent’s participation constraint (i.e., indi-
vidual rationality constraint): E[u(w(7))|e*] — g(e*) >
4, where g(-) is the agent’s cost of effort, and @ is his
reservation utility;

3. Satisfies the agent’s incentive compatibility constraint:
e* € argmax, E[u(w(w))le] — g(e).

Adverse selection (jackson) “Hidden information” problems.
Can be mitigated using, e.g., warantees, repeated interac-
tion, reputation mechanisms, signaling/screening.

Signaling (Jackson) Agents choose a costly signal (which per
Spence is often assumed to be meaningless other than for
its informational value), and then principals Bertrand bid
for contracts with agents.

A multitude of pure strategy sequential equilibria typically
exist—both pooling (various types choose same signal) and
separating (various types choose different signals).

Screening (Jackson) Bertrand principals announce a schedule of
contracts they are willing to engage in (pairs of signals and
wages), and then agents choose a contract (and hence a sig-
nal).

No pooling equilibria can exist, and there is only one sep-
arating equilibrium that can exist (but may not). Thus in
contrast with signaling, where our problem was a multitude
of PSNE, screening games may have no PSNE.



2.14 Social choice theory

Voting rule (sackson) n individuals must choose among a set A of
alternatives. Each individual has a complete, transitive pref-
erence relation »=; over A that does not have indifference.

A voting rule R(>) = R(>1,...,>n) gives a social welfare
ordering over A (which in general allows indifference). The
corresponding strict social welfare ranking is P(>).

Neutrality (sackson) For A = {a, b} (i.e., |A| = 2), consider > and
> with >;#>/. Then R(-) is neutral (over alternatives) iff
aR(>)b <= bR(>)a.

Anonymity (sackson) Let 7(-) be a permutation over {1,...,n}.
Define ={=>r(;). Then R(-) is anonymous (over individuals)
iff aR(>-)b <= aR(>")b.

Monotonicity (Jackson) Consider - and >’ with >j=>;- for all
J # 4, and >;= a while >~,= b. Then R(-) satisfies mono-
tonicity iff bR(>)a = bR(>')a.

R(-) satisfies strict monotonicity iff bR(>)a = bP(>')a.

May’s Theorem (jackson) Let A = {a,b} (i.e., |A| = 2). Then
R(-) is complete, transitive (which has no bite for |A| = 2),
neutral, anonymous, and satisfies strict monotonicity iff it is
majority rule.

If we replace strict monotonicity with monotonicity, we get
that R(-) must be a quota rule.

Unanimity (jackson) R(+) is unanimous iff a >; bVi implies that
aP(>)b.

Arrow’s independence of irrelevant alternatives (jackson)
Consider > and >' with a >; b <= a > b for all i.

R(-) satisfies AIIA iff aR(>)b <= aR(>")b; i.e., R(>)
over {a, b} only depends on > over {a, b}, not over any other
(“irrelevant”) alternatives.

Arrow’s Theorem (sackson; Micro P.S. 4) Let |A| > 3. Then R(:)
is complete, transitive, unanimous, and satisfies AITA iff
it is dictatorial (i.e., if there is some i such that V >,
aP(>)b < a>;b).

The theorem is tight; i.e., giving up any of completeness,
transitivity, unanimity, or AITA allows a non-dictatorial R(+).

Condorcet winner (jackson) a € A is a Condorcet winner iff it is
majority preferred to every other alternative.

Condorcet-consistent rule (jackson) A voting rule that picks
the Condorcet winner if there is one.

Gibbard-Satterthwaite Theorem (jackson) Let 3 < |A] < oo,
and F(-) be a social choice function (note we do not require a
full ordering). Then F(-) has range A (implied by unanimity)
and is strategy-proof (i.e., DSIC) iff it is dictatorial.

Vickrey-Clarke-Groves mechal}ism (Jackson) Let 6; € ©; be
the type of individual ¢, and 6; be his announced type. Sup-
pose d(f) makes ex post efficient decisions. Then a mecha-
nism with transfers

t:(0) = Z[uj (d(6), éj)} +x;(0_;)
J#i

for any z;(-) is dominant-strategy incentive compatible
(DSIC).

Conversely, if (d,t) is DSIC, d(-) is ex post efficient, and ©;
is sufficiently rich such that Vv; € {v;: D — R} there exists
0; such that v;(-) = u;(+, 6;), then ¢(-) must satisfy the above
condition.

Note that Gibbard-Satterthwaite says that a general DSIC
mechanism must be dictatorial. However, here we have re-
stricted ourselves to quasilinear preferences, and get a DSIC
mechanism without being dictatorial. However, although it
reaches an efficient decision it is not always balanced (pay-
ments do not total to zero), and hence is not typically overall
efficient.

Pivotal mechanism (jackson) An example of a VCG mechanism
where

:(8) = 3 [u; (d(6), 6;)] — max 3" u;(d, b)),
J#i J#i
That is, the transfers are the externality imposed on others
by choosing d(0) instead of d(6_;).

Ensures feasibility, since transfers are always negative. How-
ever, budget generally doesn’t balance—there is a need to
“burn money.”

3 Macroeconomics

3.1 Models

Two period intertemporal choice model (wir 1-11) Maximize
U(Co,C1) subject to Co + So < Yp and C1 < RSp. The
constraints can be rewritten Cp + %C’l <Yp.

Neoclassical growth model (discrete time) (Nir 3-3-5, 11-3,

8, 10, 16-28, 12-12-26) (a.k.a. Ramsey model) Maximize

>, BtU(ct) subject to:

1. ¢t + ki1 < F(ke,ne) + (1 — 6)ke for all ¢ (RHS can be
denoted f(k¢,n), or f(k¢), since the lack of disutility of
working ensures that ny = 1);

2. ki41 > 0 for all ¢;
3. ¢t > 0 for all ¢;

4. ko is given.
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We further assume U(-) satisfies Inada conditions; that the
production function is constant returns to scale and satis-
fies F}, > 0, F/,, < 0, F} > 0, and F}/, < 0; and TVC
lim¢—s 00 BU' (ct) £/ (ke )kt = 0.

The problem can be rewritten in “SL canonical form”
as maximizing >, BtU(f(kt) — ki+1) subject to kip1 €
[0, f(k¢)], the given ko, and conditions on f(-) and U(-)
as above. In functional equation form, we write V(k) =
maxy/ g, f(k)] U(f(k) — k') 4+ BV (k') (again, with additional
conditions as above).

Steady state satisfies S8f/(k*) = 1. Note the utility func-
tion does not affect the steady state (although it will affect
dynamics).

Linearization of the intereuler

o' (f(ke) = kt1) — Bf (ker1)u' (f (Fe41) — ke2) =0

about steady state gives:

kito — ku| _
ki1 — K

1+l+,3[[]],,,<cc* (k) = [keg1 — ks
Ry s

The optimal policy function g(k) satisfies:

1. g(+) is single-valued, since the value function is strictly
concave.

2. g(0) = 0 since that is the only feasible choice.

3. g(k) is in the interior of v(k), since otherwise exactly
one of U’(c) and U’(c’) would be infinite, violating the
Intereuler condition.

4. ¢g’(k) > 0, since as k increases, marginal cost of saving
goes down, while marginal benefit stays same.

5. There is unique k* > 0 such that g(k*) = k*.

6. k>k* = k>gk) >k, andk < k* = k<
g(k) < k*; i.e., capital moves closer to (without crossing
over) the steady-state level.

7. The sequence ko, g(ko),g(g(ko)),...
tonic and global convergence.

displays mono-

Endowment economy, Arrow-Debreu (nir 13-4-6) At every
period household gets y: units of good; there is no storage,
and trading in all commodities (goods delivered in each pe-
riod) takes place in period 0. Maximize > 8tU(ct) subject
to > prer < > pryr (budget constraint), and ensure y; = ¢t
(market clearing).

Endowment economy, sequential markets (vir 13-7-9) At ev-
ery period household gets y+ units of good; there is no stor-
age, and trading in “assets” (loans across periods) takes place
each period. Maximize 3 BU(c:) subject to ¢t + arr1 <
yt + Rear (budget constraint), and ensure y; = ¢¢, a1 =0
(market clearing).



Production economy, Arrow-Debreu (nir 13-10-6) Household
owns capital rented for production by competitive firms,
which also rent labor from households. Capital depreciates at
rate . There is no storage, and trading in all commodities
(goods delivered, capital rental, and labor in each period)
takes place in period 0.

1. Households maximize Y B'U(ct) subject to Y pifct +
kir1] < S pelrike + (1 — 8)ke + npwe].

2. Firms maximize (in each period) p: F'(k¢, ne) — perike —
ptwing.

3. Markets clear: ¢t + kiy1 = F(ke,ne) + (1 — 6)ke.

Note the rental rate of capital (r;) and wage rate (w¢) are
measured in units of consumption good.

Production economy, sequential markets (Nir  13-25) As
above, household owns capital rented for production by
competitive firms, which also rent labor from households.
Capital depreciates at rate 6. There is no storage, and each
period, goods delivered, capital rental, and labor are traded.
Note there is no inter-period trading, so we do not need a
price for goods.

1. Households maximize > BtU(c;) subject to ¢t +kiy1 <
rtkt + (1 — 5)]% —+ ntwWt.

2. Firms maximize (in each period) F(k¢, n¢)—riks —wing.

3. Markets clear: ¢t + k¢t1 = F(ke,ne) + (1 — 6)ke.
Formulated recursively (assuming n = 1),

1. Households have V (k, K) = max. y/[U(c) + BV (k', K')
subject to ¢ + k' = R(K)k + W(K); where K is aggre-
gate capital, and R(K) and W(K) are the rental and
wage rates as functions of aggregate capital. We further
require the “forecast” of future capital to be rational:
K’ = G(K), where G(+) is the optimal aggregate policy
function.

2. Firms maximize F(K) — RK — W, which gives FOC
R(K) = Fr(K)+1—46 and W(K) = F,(K).

3. Markets clear: C + K’ = F(K)+ (1 —§)K.
4. Consistency: G(K) = g(K, K).

Overlapping generations (nir 17-15-6, 17-32) In an endowment
OLG economy, a competitive equilibrium is Pareto optimal
iff Y272, 1/pt = oo where the interest rate is Ry = p¢/pit1-

In an an OLG economy with production, a competitive equi-
librium is dynamic efficient iff Fj (K«) +1—46 > 1.

Real Business Cycles model (nir 18-7-14) Benchmark RBC
model is NCGM with endogenous hours, ownership of firms
and capital by households, and stochastic productivity A
multiplying labor (so production function is F(k¢, Aing)).
We specified:

—o_1

1—0o

nitx

1
i1 . c
1. CRRA utility: U(c,n) = — A

2. Cobb-Douglas production: y; = Atkto‘ntlfo‘;

3. Productivity given by log Ay = plog A¢—1 + ¢ with &
distributed iid normal.

Optimal taxation—primal approach (nir 10) Solve HH prob-
lem and combine FOC and budget constraint with govern-
ment budget constraint to get one expression that ties to-
gether allocations but has no prices or taxes. Then gover-
ment maximizes HH utility over allocations subject to this
constraint.

Note that in the case with capital,* the problem is not sta-
tionary; i.e., we cannot use our typical dynamic program-
ming tools, and need to worry about the government’s ability
to commit to a future tax policy.

3.2 Imperfect competition

Imperfect competition model (nir 21) Consider two stages of
production: final good manufacturer operates competitively,
purchasing inputs from intermediate good producers, who
are small enough to take general price levels and aggregate
demand as given, but whose products are imperfect substi-
tutes to the production process.

Imperfect competition: final goods (nir 21) Final good pro-
ducer has Dixit-Stiglitz production technology:

1 1/p
_ o g
v=|) @
1

which is constant elasticity of substitution (ﬁ between all
pairs of inputs) and constant returns to scale. p € (0,1),
with p — 1 corresponding to a competitive market where all

inputs are perfect substitutes.
Conditional factor demands are therefore
1

Q) = [2]7 Ty = [%]7 Ty,

where the Lagrange multiplier on [fol Q]p, dj]t/P > Y also sat-
isfies A = E*/Y = P, the (aggregate) average cost. Solving

for this gives
p—1
1 =
A=P = [/ pf’ﬁ1:| P
J
0

The own-price elasticity of demand is n =
effects through P.

ﬁ, ignoring the

Imperfect competition: intermediate goods (Nir 21) Inter-
mediate goods producers have identical production technolo-
gies (affected by same shocks): Q; = zk;’n}_a — ¢, where
¢ > 0 is overhead cost (since there aren’t really economic
profits). Has constant marginal cost, and therefore increas-
ing returns to scale (because of ¢).

Monopolistic problem is to maximize over prices pQ(p) —
c(Q(p)); first-order condition gives markup = p/MC =
n 1

0 ~ b°
3.3 General concepts

Cobb-Douglas production function (Macro p.s. 1) F(K,N) =
2K*N1~ Constant returns to scale. Fraction o of output
goes to capital, and 1 — « to labor.

Constant relative risk aversion utility function (nir 14-15,
18-72-4) U(c) = (c!77 —1)/(1 — &), with ¢ > 0 (reduced to
log utility with ¢ = 1;1 empirically we expect o € [1,5]).
Relative risk aversion is o. Higher risk aversion also cor-
responds to a higher desire to smooth consumption over
time.

Additively separability with stationary discounting (Nir 1-
24) General assumption that U(Cop,C1) = u(Co) + Bu(C1)
with 3 € (0,1).

Intertemporal Euler equation (Nir 11-5)  u/(ct) =
BRu/(ct4+1), where R is the return on not-consuming (e.g.,
f'(kt+1) = F{(kt+1,n¢+1) + (1 = 0)). This first-order differ-
ence equation is given by FOCs of the maximization problem
for two consecutive time periods.

1-28,

Intertemporal elasticity of substitution (Nir 1-31, Max notes)

—dlog g—‘;/dlogR = —dlog %/dlog %

For CRRA utility function U(c) = ¢!~7/(1 — o), intereuler

is C;7 = BCy R so IEoS = L = RRA™L.

General equilibrium (xNir 2-11) A competitive equilibrium is a set
of allocations and prices such that

1. Actors (i.e., households, firms, ..
jectives;

2. Markets clear; and

.) maximize their ob-

3. Resource constraints are satisfied.

Inada conditions (nir 3-5) We generally assume utility satisfies
Inada conditions, which imply that the nonnegativity con-
straint on consumption will not bind:

1. U(0) = 0;

2. U is continuously differentiable;

*We generally need to impose restrictions on first-period taxation, since otherwise the government will tax capital very highly then (since it’s supplied perfectly inelastically).
TNote the Taylor approximation of ¢! =% — 1 about o =1is ¢! =7 —1 & (c? — 1) — c®(logc)(c — 1) = (1 — o) logc. Thus as o — 1, we have U(c) = (¢!=7 —1)/(1 — o) =~ logc.
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3. U'(xz) > 0 (U is strictly increasing);
4. U"(z) <0 (U is strictly concave);

5. limy— 04 U’ (z) = oo;
6. limz— 00 U'(z) = 0.

Transversality condition (Macro Ps.  2) In
limy—s 00 BYU’ (ct) f' (kt)kt = 0.

NCGM,

No Ponzi condition (Max notes) Credit constraint on agents,
which should never bind but suffice to prevent the optimality
of a “doubling” strategy. For example, Vt, a; > —k for some

k.

Dynamic systems (Nir 12-4-11, Macro P.S. 5-4) Let the sequence
{z¢} evolve according to zi41 = Wz, Using eigen de-
composition W = PAP~! giving the “decoupled system”
P711‘t+1 = AP71$t. Then if Z; = Pill’t, we have
Ty = /\’ﬁ“gi and hence z: = PAtX).

For 2 x 2 case, if
1. |A1]| > 1 and |A2| > 1, then the system “explodes” un-
less 0,1 = Zo,2 = 0 (source).

2. |A1] < 1 and |A2| < 1, then the system converges for
any &o,1 and Zo 2 (sink).

3. |A1] < 1 and |A2| > 1, then the system converges for
any Zo,1 as long as &o,2 = 0 (saddle path).

The speed of convergence for a state variable equals one mi-
nus the slope of the optimal policy function (1 — ¢’(k)).

First Welfare Theorem (nir 13-27) The competitive equilibrium
is Pareto optimal. Then if we know our solution to the social
planner problem is the unique Pareto optimal solution, we
know it must equal the competitive equilibrium.

Ramsey equilibrium (Nir 20-3, final solutions) A Ramsey equilib-
rium is allocations, prices, and taxes such that:

1. Households maximize utility subject to their budget
constraints, taking prices and taxes as given, and

2. Government maximizes households’ utility while financ-
ing government expenditures (i.e., meeting its budget
constraint).

3.4 Dynamic programming mathematics

Metric space (nir 6-3-4) A set S and a distance function p: S X
S — R such that:
1. Vz,y € S, p(m,y) > 0;
2. Vz,y €S, p(z,y) =0 <= z=y;
3. Vz,y €S, p(z,y) = p(y, );
4. Triangle inequality: Vz, y, z € S, p(z, 2) < p(z,y) +
Py, 2).

Normed vector space (nir 6-5-6) A vector space S and a norm
[[-]l: S — R such that:
1. Vz € S, ||z|| > 0;
2. Ve eS, |lz| =0 <= z=0;
3. Triangle inequality: V&, y € S, ||z + y|| < ||z]| + ||yl
4. Scalar multiplication: Vz € S, Vo € R, ||az|| = | ||z]|.

Note any normed vector space induces a metric space with
plz,y) = llz -yl

Supremum norm (R") ir 6-7-8) [|-[|s: R — R with [[z]ls =
SUP;=1,...,n |*].
Euclidean norm (nir 6-9) ||||g: R™ — R with

Continuous function (Nir 6-10; Micro math 3) f: .S — R is contin-
uous at z iff Vy € S and Ve > 0, there exists § > 0 such that
ly—zll <6 = |f(y) — flz)| <e.

Equivalently, iff for all sequences x, converging to x, the
sequence f(xn) converges to f(z).

Supremum norm (real-valued functions) (nir 6-7-8)  Let
C(X) denote the set of bounded, continuous functions from
X to R. Then [|-|s: C(X) — R with || f||s = sup,ex |f(2)].

Convergent sequence (nir 7-4) The sequence {z;}{2, in S con-
verges to € S (or equivalently, the sequence has limit x) iff
Ve > 0, there exists n such that i >n = |lz; —z|| <e. In
other words, there is a point in the sequence beyond which
all elements are arbitrarily close to the limit.

Cauchy sequence (nir 7-9) The sequence {xi}?io in S is Cauchy
iff Ve > 0, there exists n such that ¢ > n and j > n together
imply that ||z; — ;|| < e. In other words, there is a point in
the sequence beyond which all elements are arbitrarily close
to each other. Every convergent sequence is Cauchy (shown
via triangle inequality), but not every Cauchy sequence is

convergent.

Complete metric space (nir 7-10-16) A metric space (S,p) is
complete iff every Cauchy sequence in S converges to some
point in S. Importantly, if C(X) is the set of bounded, con-
tinuous functions from X to R, and ||-[s: C(X) — R is the
sup norm, then (C(X), ||-||s is a complete metric space.

Contraction (nir 8-3-4) If (S, p) is a metric space, the operator
T:S — S is a contraction of modulus 8 € (0,1) iff Vz,
y € S, we have p(Tz,Ty) < Bp(z,y). That is, T brings any
two elements closer together. Every contraction is a contin-
uous mapping.
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Contraction Mapping Theorem (xir s-5) [a.k.a. Banach fixed
point theorem.] If T is a contraction on a complete metric
space, then

1. T has exactly one fixed point V* such that TV* = V*,;
and

2. The sequence {V;} where V1 = T'V; converges to V*
from any starting Vp.

Contraction on subsets (nir s-11) Suppose T is a contraction on
a complete metric space (5, p), with fixed point V* = TV*.
Further suppose Y C S is a closed set, that Z C Y, and that
VyeY, Tye Z. Then V* € Z.

Blackwell’s sufficient conditions for a contraction (nir  s-
12-3) Blackwell gives sufficient (not necessary) conditions for
an operator to be a contraction on the metric space B(R™, R)
(the set of bounded functions R™ — R) with the sup norm.
An operator T is a contraction if it satisfies

1. Monotonicity: if Vz, f(z) < g(z), then Vz, Tf(z) <
Tg(x); and

2. Discounting: there exists 8 € (0,1) such that for all
a >0, f(), and z, we have T'(f(z)+a) < T(f(z))+ B
[slight abuse of notation].

Principle of Optimality (nir 9) Under certain conditions, the
solutions to the following two problems are the same:

1. Sequence problem: W (zo) = max(a, 1} Yoo B F(ze, Te41)

such that zo given and Vi, z¢41 € I'(z¢).
V(z) =

2. Functional equation:

BV (z")].

maXg/er(z) [F(:L', $/) +

Assume

1. T'(x) is nonempty for all x;

2. For all initial conditions g and feasible plans {z}, the
limit u({z¢}) = limp— 00 B F(xt, T4+1) exists (although
it may be $00).

Then:
1. If W(z0) is the supremum over feasible {z;} of u({zt}),
then W satisfies the FE.

2. Any solution V to the FE that satisfies boundedness
condition limy o0 8"V (2zn) = 0 is a solution to the
SP.

3. Any feasible plan {z}} that attains the supremum in
the SP satisfies W (z}) = F(a}, 27, ,) + Bw(zy,,) for

Vt.
4. Any feasible plan {z}} that satisfies
W(zf) = F(zf,27,4) + Bw(zi,,) for V¢ and

limy s 0o suthW(:L‘;‘) < 0 attains the supremum in
the SP. [?]



So approach is: solve FE, pick the unique solution that sat-
isfies boundeness condition, construct a plan from the policy
corresponding to this solution, check the limit condition to
make sure this plan is indeed optimal for the SP.

Dynamic programming: bounded returns (nir 10) Given the
SP/FE as above, assume:

1. z takes on values in a convex subset of R!, and T'(x) is
nonempty and compact-valued for all z. This implies
assumption [1| above.

2. The function F is bounded and continuous; 8 € (0,1).
Together with assumption [I] this implies assumption 2]
above.

3. For each z/, the function F(-,
of its first arguments.

z') is increasing in each

4. T'() is monotone; i.e., 1 < z2 = ['(z1) C ['(z2).

5. F is strictly concave.

6. T is convex; i.e., if 2} € I'(x1) and ), € I'(x2), then
0z + (1 —0)zhy € T(0z1 + (1 — 0)x2).

7. F is continuously differentiable on the interior of the set
on which it is defined.

Then

1. Under assumptions [I] and the operator T' where
TV (x) = maxy ep(z)[F(x, ') + BV (z')] maps bounded
continuous functions into bounded continuous func-
tions, is a contraction (and therefore has a unique fixed
point), and is the value function for the corresponding
FE.

2. Under assumptions [1H4] the value function V (unique
fixed point of T as defined above) is strictly increasing.

3. Under assumptions and the value function V' is
strictly concave, and the corresponding optimal policy
correspondence g is a continuous function.

4. Under assumptions and |5H7} the value function V is
differentiable (by Benveniste-Scheinkman) and satisfies
envelope condition V' (zg) = %—5“10,9(10).

Benveniste-Scheinkman Theorem (nir 10-25) Suppose

1. X CR! is a convex set;
2. V: X — R is a concave function;

3. xo € interior(X); and D is a neighborhood of zg, with
D CX;

4. @: D — R is a concave differentiable function with
Q(z0) = V(xo) and Vx € D, Q(z) < V(z).

Then V(-) is differentiable at z¢ with V/(z¢) = Q' (o).

The envelope condition of a value function is sometimes
called the Benveniste-Scheinkman condition.

3.5 Continuous time

Dynamic systems in continuous time (Nir 14-2-3, 7) In R, the
system

xt—axt:%:aa: <=

o — g q¢

xT

<= logxt =at+c
— z; = zoe®

converges iff real(a) < 0.

In R™, the system iy = Az¢ = &y = AZ; where &y = P~ lay
and the eigen decomposition is A = PAP~!. Therefore

et

Tt =€ Ty = T Q-

For 2 x 2 case (recall det A =[] A; and tr A =3 \;),

det A < 0: Saddle path
det A >0, tr A >0: Unstable
tr A< 0: Sink

Linearization in continuous time (Nir 14-6, Max notes) Tt =
flze) = @&t = Djs(x«)(xt — x«). [cf discrete time
w1 = g(@e) = @1 — T+ R Dg(@4) (@6 — 24) ]

NCGM in continuous time (Nir 14-8-15) Maximize

LOZOO eiPtU(ct)dt such that i€t = Wi + Riky — ¢t — Ok:.
The Hamiltonian is given by:

H=ert [U(ct) + M| Wi + Reky — ¢t — 8k ]}

Budget constraint w/o k¢

=Pt U(Ct) + [Wt + Rikt — ¢t — 5]%].

i iti OH _ OH _ _ d pt =
First order conditions 52 = 0 and g = (e7Pth) =

Tat

e Pt (pAt—j\t) (or equivalently, gTZ = —/it), along with TVC
lim¢— o0 e Pt Atk = 0 (or equivalently, lim;— o0 eke = 0),
characterize the solution. Solving gives:

¢t = g,,((” 5(6 = Rt +p)

Fet

Wi + Rike —ct — Oky.

—_————

=y+ by CRS

Imposing functional forms for U(-) and F(-) and log-

linearizing allows us to get a continuous time dynamic system
for k+ and é;.

Log-linearization (Nir 14-24, Max notes) Write every variable x as

el°g* and then linearize in logz about steady state log ..
Use notation & = logz — log z, ~ *-"*. For example,
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e Rz (l+ 2);
c Yy R Ty« (1 + 2+ 9);
Yl (1+ ai + BY);

1
2
3. z%yP ~ 22
1 F@) + (@)wd =

Given YV = T]YKI? +
ny L where ny x is the elasticity of Y with respect to X:

f() (A +ni).

F(K, L), log-linearization gives ¥ =

_ Fl (K., L)X
NYX =" 7. 7+~

F(Kx, Ly)
Note that & = %(logm —logz«) = %(logx) =z/x.
3.6 Uncertainty
Uncertainty: general setup (Nir 16-3-6) s = {y1,...,Yn} set
of possible states of economy. s: realization at time ¢.
t = (so,...,5¢t) “history” at time t. () probability func-
tion.

Often assume a Markov process: 7(s¢t1|st) = m(se41]st);
i.e., only the previous period matters. Process described by
a transition matrix P where P;; = w(s¢41 = yj|st = ;) with
>=; Pij = 1 for all i. “Invariant distribution” is eigenvector
Tixn = T

Lucas tree (Nir 16-22-4) Assume von Neumann-Morgenstern util-
ity function, thus objective function

DD B'r(YU(ee(=") =Eo ) B'U(ee(z")).
t=0 t t=0

Price (at time 0) of a claim that delivers one unit at time ¢
given history 2t is p¢(2?). Budget constraint (Arrow-Debreu)

Zzpt Heg(2h) < Zzpt

t=0 ,t t=0 t

BIE

where y; is a (stochastic) endowment. Normalizing pg = 1
gives FOC

B W) _ g U0

2 =
Bel&) A U'(y0)

Risk-free bond pricing (nir 16-25-6) An asset purchased at time
t that pays 1 consumption unit at time ¢ 4+ 1. Price is:
3y Pri1(zy1, 2Y)
pt(2t)
5% 7T(Zt+1, ) U (ye+1 (241, 2%))
= Ui ()

E: (U’ (yt+1(zt+1,zt))]
U (ye(21))

qF (") =




Stock pricing (vir 16-26-7) An asset purchased at time ¢ that pays

dividend d¢(zt). Price is:

Z?o:wrl > s Ps(2°)ds(2%)
pt(zt)

Z IBG—t S(ZS))dS(ZS).

2 ()

giree(s) =

3.7 Manuel Amador

Lucas cost of busines cycles (Manuety) We find that the wel-

fare impact of eliminating the business cycle is very small
(< 0.04%), especially compared to the impact of raising the
growth rate of consumption. Complaints include the facts
that:

1. A representative agent is bad for measuring utility and
estimating the variance in consumption.

2. The model treats shocks as transitory; treating con-
sumption as persistent results in significantly higher
“cost” estimates.

3. Uncertainty could also affect the consumption growth
rate, which requires an endogenous growth model (not
the NCGM).

Incomplete markets: finite horizon (Manuel) Suppose a two

period model with uncertain income in the second period,
and incomplete markets in which only a risk-free bond is
available at return R. The consumer chooses savings a to
maximize u(yo — a) + BEu(y1 + Ra), yielding FOC (in-
tereuler)

u'(yo — a*) = BRE W/ (y1 + Ra™).

If instead there were no uncertainty in the second period, the
analogous FOC would be

u'(yo — a) = BRu'(Ey1 + Ra).
By Jensen’s inequality, optimal savings is higher in the un-
certain world (a* > a) as long as v/’ > 0.

Thus in a two period model, the difference between savings
in complete and incomplete markets depends on the sign of
'LLIH.

Incomplete markets: infinite horizon (Manuel) Again, we

suppose uncertain income, and the availability of only a
risk-free bond. Taking FOC and envelope condition of

V(@)= mex u(@—a)+ 262 Br(s)V[Ra +y(s)]

gives that V/(z) > BRE[V’/(2’)]. Thus if SR > 1, we
have V’(z) is a nonnegative supermartingale and converges
to a finite value by Dobb’s Convergence Theorem. Thus
x converges, but cannot converge to a finite value since

> = Ras«(z*°) + y, the RHS of which is stochastic. So
T — oo.

Thus in an infinite-horizon model, complete and incomplete
markets with SR = 1 necessarily look different.

Hall’s martingale hypothesis (Manuel) Suppose u(c) = Ac —

Bc? (which may be a second-order Taylor expansion of the
true utility function), and that only a risk-free bond is avail-
able, with R3 = 1. Intereuler gives that Ect41 = ¢¢; that is,
{ct} follows an AR(1) process.

However, many models have ¢ today as a predictor of ¢ to-
morrow, even without the same intereuler (e.g., the Aiyagari
model). Tests are always rejected, but are generally run with
aggregate data, with resulting problems of

1. Goods aggregation (i.e., how do you define consumption
given a basket of goods?),

2. Agent aggregation (i.e., even if intereuler holds for each
of hetrogeneous agents, it may not hold in aggregate),

3. Time aggregation (i.e., how do you deal with data that

is in discrete time period “chunks”?).

The presence of durable goods introduces an MA component
to {ct}, making it an ARMA process.

One-sided lack of commitment (Manuel) One reason markets

might be incomplete is a lack of commitment. Suppose risk-
averse consumuer can borrow from a risk-neutral lender, but
can’t commit to repayment. Suppose RSB = 1; lender takes
stochastic endowment and gives consumer consumption c(s)
today, promising consumer future lifetime value w(s). Thus
value to lender is:

P(v) =  max Z m(s)[y(s)

- P
{e(s)w(s)}s Z% c(s) + BP(w(s))]

such that

[PK (w)]: D w(s)[ule(s) + Bu(s)] 2 v,

seS
[IC (A(s)]: ule(s)) + Bw(s) = u(y(s)) + B vautarky -
——

(w(s")
B O

FOCs and envelope condition give that
11
u(c(s’)  u!(c(s)

so consumption is weakly increasing over time. This is not
consistent with G.E., where we therefore must have RS < 1.

+A(s"),

Two-sided lack of commitment (Manuel) [Kocherlakota] Sup-

pose two risk-averse consumuers who each get a stochastic
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endowment that has no aggregate shock. Neither can com-
mit to remain in an insurance contract. Value to insurer in
excess of autarky is:

Q(Ao, s0) =
max u(l—c) —u(l —y(s0)) + B Y m(s)Q(A(5),5)

e, {A(s)}s ics
such that

[PK ()] u(c) — uly(s0) + B 3 n(

seS

$)A(s) > Ao,

[IC-1 (Br(s)A(s)]: A(s) = 0,
[1C-2 (Br(5)0())]: Q(A(s), 8) > 0.

FOCs and envelope condition give that
Q'(R0,50) = A(s) + (1 +6(5))Q"(A(s), 5),
thus either consumption stays the same, increases the the

lowest level that satisfies IC-1, or falls to the highest level
that satisfies IC-2.

Bulow-Rogoff defaultable debt model (Manuel) An  agent

(who need only have monotone preferences) cannot com-
mit to repay a risk-neutral insurer; if he defaults, he will
only be able to save in a complete-markets “Swiss bank
account” that pays expected return R.

If wealth (™)
t
W = 35 n(s7ls) )

T>t 8T

is finite for all s*, and we impose no Ponzi condition (natural
borrowing constraint) that debt

= 3 w1 ) < wist)

T>t sT

for all st, then debt will always be nonpositive—if the agent
were ever a borrower, he would do better to defect.

Thus to get (e.g., international) debt, we need either
1. Infinite wealth in some state s?,

2. A limited ability to save in nearly-complete markets, or

3. Lenders’ ability to punish.

Hyperbolic discounting (manuel) Agent has a higher discount

rate between today and tomorrow than between tomorrow
and following periods (time-inconsistent). Often parameter-
ized as “f-9 discounting”:

u(ct) + B Z 0T u(ctqr)-

=1

Caution: Suppose an agent only likes candy bars when he’s
healthy. If he knows he’s healthy today, he may prefer 1 to-
day to 2 tomorrow, but 2 the day after tomorrow to 1 tomor-
row. This may wind up looking like hyperbolic discounting,
but isn’t.



3.8 John Taylor

Taylor Rule (Tayior) A policy rule (or family of policy rules given
different coefficients) for the nominal interest rate as a func-
tion of (four-quarter average) inflation and the GDP output
gap (expressed as a percentage deviation from trend):

i=m+0.5y 4+ 0.5(7m — 2) + 2
=157+ 0.5y + 1.

~~

>1

The “greater than one” principal suggests that the coefficient
on inflation should exceed one.

Granger causality (Taylor) p; Granger causes y; iff the er-
ror from predicting y: based on lagged y and p
(Ugrediction(yt‘pt*hpt*?’ e Yt—1,Yt—2,...)) is less than
the prediction error from predicting y; based on lagged y only
(Ugrediction(yf‘yt*hyt*Q"“))' Note this is not a “philo-
sophical” point, and does not address causation vs. correla-
tion issues.

That is, the hypothesis that p does not Granger cause y is
the hypothesis that coefficients on lagged ps are all zero.

Okun’s Law (Taylor)

Y -Y*

v = —2.5(u —u*)

where Y* is potential GDP and u* is the natural rate of
unemployment.

Cagan money demand (Taylor) mt—pt = ay+—bit, where money
supply m, price level p, and output gap y are all logs. LHS
is real money balance; when interest rate is higher, demand
for money is lower (semi-log specification).

Note Lucas prefers log-log specification ms — pr = ayr —
blog(it).

Rational expectations models (Taylor) Variables in system are
a function of exogenous shocks, lags, and expected future
values of variables. General solution method:

1. Set up in vector notation (may require time shifting and
substitution.

2. Use method of undetermined coefficients to get a (de-
terministic) difference equation in the coefficients (y;)
on the MA(o0) representation of variables.

3. Guess a form for the particular solution, and solve for
coefficients.

4. Cholesky decompose the coefficient matrix (A =
HAH™') in the homogenous part of the determinis-
tic difference equation to get a decoupled equation (in
pi = H- 1.

5. Apply stability condition to pin down some element(s)
of po.

6. Use vo = Huop + ;LOP as another equation to solve for
solution.

Cagan model (raylor) Rational expectations model given by:
mi —pt = —B(Be+1 — pr)-
Derived from Cagan money demand equation with

1. Either zero coefficient on y¢, or y; = 0 for all ¢, and
2. r¢ ignored in 4y = ¢ + W41 = Tt + Pt+1 — Pt-
Price reactions to money supply shocks are not quite one-

for-one, since there’s an anticipated future deflation which
causes people to hold some of the extra money.

Dornbush model (Taylor) Rational expectations model given by:

my — pt = —a(ér41 — et)
pt — pe—1 = Bler — pe).

(Note higher e is currency depreciation.)

Prices adjust gradually, but the exchange rate overshoots.
By first equation, if money supply is shocked there must be
expected future currency appreciation (e }); but there must
be long run depreciation (e 1) by second equation.

Philips Curve (raylor) Connection between inflation and either
GDP gap or unemployment (by Okun’s Law).

1. Traditional (short-run):

T = sy = —2.5psr(u — u*).

2. Expectations-augmented (long-run):
T=7+epy =7 — 2-54P1r(u - U*)'

Time inconsistency (Taylor) Three types of policy plans o that
aim to maximize social welfare S(z1,z2,71,72) where 7 are
policies and x are responses (including expectations of pol-
icy):

1. Consistent (discretion): Take z; as given when choosing
2.

2. Optimal (rule-based): Recognize that z; responds to
.

3. Inconsistent (cheating): Promise optimal, but then

name consistent.

Lucas supply function (rayior) y: = ¢(m¢ — @) + €¢. Can be
seen directly from Expectations-augmented Philips curve.
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4 Mathematics

4.1 General mathematical concepts
Elasticity (wikipedia) Elasticity of f(x) is

zf'(x)
f(=z)

of

oz f(x)

‘8log f(x)
dlogx

_ ‘3f/f
T8z /x

Euler’s law (Producer 14) If f is differentiable, it is homogeneous
of degree k iff p- Vf(p) = kf(p).

One direction proved by differentiating f(Ap) = M\* f(p) with
respect to A, and then setting A = 1. Implies that if f is ho-
mogeneous of degree one, then V f is homogeneous of degree
Zero.

Strong set order (Producer 32) A < B in the strong set order iff
foralla € A and b € B with a > b, then a € B and b € A.
Equivalently, every element in A\ B is < every element in
AN B, which is < every element in B\ A.

Meet (Producer 36) For z, y € R™, the meet is z ANy =
(min{z1,y1},...,min{zn,yn}). More generally, on a par-
tially ordered set, x Ay is the greatest lower bound of z and
y.

Join (Producer 36) For z, y € R", the meet is z Vy =
(max{z1,y1},...,max{xn,yn}). More generally, on a par-
tially ordered set, x V y is the least upper bound of z and

Y.

Sublattice (Producer 37) A set X is a sublattice iff Vz, y € X, we
have z Ay € X and « Vy € X. Any sublattice in R™ can be
described as an intersection of sets of the forms

1. A product set X7 X --+ X Xp; or
2. A set {(z1,...,2n): ©; < g(z;)}, where g(-) is an in-
creasing function.
Orthants of Euclidean space (7)
L. R} = {x: x > 0} = {x: x; > 0Vi}, which includes the
axes and 0.

2. {x:x > 0} = {x:2; > 0Vi} \ 0, which includes the
axes, but not 0.

3. R}, = {x: x> 0} = {x: 2; > 0Vi}, which includes
neither the axes nor 0.



Sum of powers (7)

n

. n(n+1
>l

i=1

5 n(n+1)(2n+1)

iis _ nf(n+1)?
. B 4
i=1

i 4 nn+1)2n+1)Bn?+3n-1)
U
= 30

Geometric series (7)

Zn: Ri a(l— R"*l)
aR' = ~— — 2
= 1-R

(if R < 1)

oo ) a
U
;R T 1-R

4.2 Set theory

Supremum limit (Math camp) limsup, An = lim, A, =
o 1 U=, Ak Set of all elements appearing in an infinite
number of A;.

Infimum limit (Math camp) liminf, A, = lim  Ap =
> 1M, Ai. Set of all elements appearing in all but
a finite number of A;.

Partition (Math camp) {Aq} such that Ao C A and

1. Non-empty: Ay # &5
2. Exhaustive: |J Ay = A4;
3. Non-overlapping: A; # A; — A;NA; = 2.

Convex set (Math camp) Vz and 2’ € S, Vt € [0,1], tz+ (1 —t)z’ €
S (i.e., the linear combination of any two points in S is also
in S.)

4.3 Binary relations

Complete (Math camp) aRbV bRa.

Transitive (Math camp) aRb A bRc —> aRc.
Symmetric (Math camp) aRb <= bRa.

Negative transitive (Math camp) aRb = cRbV aRc.
Reflexive (Math camp) aRa.

Irreflexive (Math camp) @ #b =—> aRb.

Asymmetric (Math camp) aRbA b # ¢ = cRa.

Equivalence relation (Math camp) A binary relation that is re-
flexive, symmetric, and transitive.

4.4 Functions
Function (Math camp) A binary relation that is

1. Well defined on its range: Vz, Jy such that zRy;
2. Uniquely defined on its range: xRy A xRz =— y = z.

Surjective (Math camp) Range is Y. (a.k.a. “onto.”)
Injective (Math camp) T # ' = f(x) # f(z').

Bijective (Math camp) Both surjective and injective. (a.k.a. “one-
to-one.”)

Monotone (c&B p. 50) g(z) monotone on its domain iff either u >
v = g(u) > g(v) (increasing), or u < v = g(u) < g(v)
(decreasing). A monotone function is one-to-one and onto
from its domain to its image (note, not necessarily to its
range).

Convex function (Hansen 2-22) g: R™ — R is convex iff Vz, y €
R™, VA € [0,1], Ag(z) + (1 = Ng(y) 2 g(Az + (1 = My).

Binomial theorem (c&B 3.2.2) For any z, y € R and n € Z,

n >0, then (z +y)" = Y7, (})z'y™ . Special cases: 1 =
(p+ (1 —p)" =31 ()P’ —p)"~Fand 2" = 370 (7).

Gamma function (ceB p. 09) I'(a) = [Tt e tdt =

fol [log(1/t)]* 1 dt on o > 0. (T is also defined everywhere
else except for 0, —1,—2,....)

1. T(a+1) = al'(«), when « > 0.
2. I'(n) = (n — 1)! for integer n > 0.
3. T(3) = vx

B
. ﬂ m
o

Beta function (c&B eq. 3.3.17) B(a, 8) =T'(a) - T'(8)/T(a + B).

Logistic function (D&M 515; Metrics P.S. 5-4a)

e®

Az)=(1+e @) 1= T

Inverse is A~ (u) = £(u) = log[p/(1 — w)]. First derivative

e®

AMz)=AN(z) = T

=A(z)(1 - A(z)) = A(x)A—=z.
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Taylor series (c«B s.5.20-1) If g(z) has derivatives of order r (i.e.,
g(") (z) exists), then for any constant a the Taylor polynomial
of order r about a is:

" o) (a .
g .( )(m—a)l.

7!

g(z) = Tr(z) =
i=0

The remainder from the approximation Taylor approxima-
tion, g(z) — Tr(x) equals [T gtV (¢) - (x — t)"/rldt. This
error always tends to O faster than the highest-order explicit
term—i.e., limz_4[g(z) — Tr(z)]/(x — a)” = 0.

Derivative of power series (iansen 2-20) If g(t) = ao + a1t +
agt? +--- =3, a;t?, then
ak
—g(t) = apk!.
otk =0

This is useful for calculating moments if we can express the
mgf as a power series.

Taylor series examples (2) f(z) = f(z') + Vf(2') - (z — z').
Note that for concave (convex) f(-), the LHS is weakly less
(greater) than the RHS.

For small €, we have:

e"® ~ 1+ ne;
(14 ae)™ =1+ ane;
log(1+¢) = ¢;

af —1

=~ loga.

Second-order is

@) ~ @)+ V@) (e —a')+ L@ —a)- V2f(a )@ — ).

Mean value expansion (Mahajan 3-13; Hayashi 470-1) If h: RP —
R? is a continuously differentiable function, then A(-) admits
a mean value expansion about 6

h(b) = h(8) + 220 (3 — 6)

where b is a value lying between b and 0 (note the MVT ap-
plies to individual elements of h(-), so b actually differs from
element to element in the vector equation.



4.5 Correspondences

Correspondence (Micro math 5) ¢: X =% Y is a mapping from

elements of X to subsets of Y (i.e., for z € X, we have
#(z) CY).

Lower semi-continuity (Micro math 7; Clayton G.E. 1) ¢: X =% Y

is lower semi-/hemi-continuous at x € X iff for every open
set G C Y containing ¢(x), there is an open set U(z) C X
containing x such that if 2’ € U(z), then ¢(z') NG # @.

Intuitively, any element in ¢(z) can be “approached” from
all directions.

For a single-valued correspondence (i.e., a function), lsc
<= usc <= continuous.

Upper semi-continuity (Micro math; Clayton G.E. I; Bernheim 32)

¢: X = Y is upper semi-/hemi-continuous at * € X iff
for every open set G C Y containing ¢(z), there is an open
set U(z) C X containing z such that if 2’ € U(z), then
(') C G.

Identically, if for any sequences z; — = and y; — y with
yt € ¢(x¢) for all ¢, we have y € ¢(z).

Intuitively, ¢(z) does not “suddenly contain new points;”
i.e., the graph of the function is a closed set.

For a single-valued correspondence (i.e., a function), usc
<= lIsc <= continuous.

Brouwer’s Fixed Point Theorem (clayton c.E. 1) If a function

f: A — Ais continuous, and A is compact and convex, then
f(z) = z for some fixed point = € A.

Kakutani’s Fixed Point Theorem (Clayton G.E. I; Bernheim 32)

Suppose S is compact and convex. ~v: S = S is convex-
valued and upper semi-continuous. Then there exists a fixed
point s* € S such that s* € v(s*).

4.6 Linear algebra

Matrix (Amemiya Ch. 11) Matrix Ay xm = {a;;} has n rows and m

columns.

1. Square iff n =m
2. Transpose A’ = {aj;} is m x n.

3. Symmetric iff square and Vi, j, a;; = aj;, or equiva-
lently iff A = A’.

4. Diagonal iff Vi # j, a;; = 0 (i.e., nondiagonal elements
are 0).

Matrix multiplication (Amemiya ch. 11) If ¢ is a scalar, cA =

Ac={ca;;j}. f Aisn xm and Bis m Xxr, then C = AB is
an n X r matrix with ¢;; = 3 )L, ajrbg;. If AB is defined,
then (AB)' = B’A’.

Determinant (Amemiya Ch. 11; Greene  23-6) |A| =

>, (=1)¥Ja;;|A;j|, where j is an arbitrarily chosen in-
teger and A;; is the matrix that deletes the ith row and jth
column from A.

This is the volume of the parallelotope with edges along the
columns of A.
1. Determinant of a 2 X 2 matrix A is ai11a22 — a12a21.

2. Determinant of a 3 X 3 matrix A is ajjassassy —
a11a32023 — A21012033 + 021032013 + G31612023 —

G31022013.

3. |A|=|A|.

4. For diagonal A, |A| =[], ai; thus |I| = 1.

5. |cApxn| =c"|Al.

6. If A, B both n x n, then |AB| = |A||B|; together with
II| = 1, this gives |A~1| = |A|7L.

7. If any column/row of A is all zeroes, |A| = 0; switch-

ing two adjacent columns/rows changes the sign of the
determinant; if two c¢/rs are identical, the determinant
is zero.

8. For any eigenvalue A, |A — AI| = 0.

9. |[Anxn| = [I; A (i.e., determinant is the product of
eigenvalues).

Matrix inverse (Amemiya Ch. 11; Greene 30-1) A"1TA = AA~1 =1

for any matrix A such that |A| # 0.

1. If A, B both n x n, and |A|] # 0, |B| # 0, then
(AB)"! =B~1A-L
2. If A~ exists, then (A1) = (A/)~ L

3. The inverse of a 2 X 2 matrix is

[a b}*l_i[d 4;}_ 1 [d 7b}
c d _|A\ —c al| ad—bel|l—c al’

4. For diagonal A, the inverse is diagonal with elements
-1

Q.

Orthogonal matrix (Amemiya Ch.11) A square matrix A, x is or-

thogonal iff A’ = A~1. This corresponds to having columns
orthogonal and normalized.

Trace (Amemiya Ch. 11; Metrics section; Greene 41-2) tr(Anxn) = D, a4

(i.e., the sum of the diagonal elements).
1. tr(cA) = ctr(A).
2. tr(A’) = tr(A).
3. tr(A + B) = tr(A) + tr(B).
4. tr(AnxmBmxn) = tr(BA).

5. Trace is the sum of eigenvalues: tr(Anxn) = ; A
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6. tr(AnxmA’) = tr(A’A) = A Z;”Zl a?j =
> a;-aj =3, tr(aja;-), where a; are the columns
of A.

Caution: in general, tr(AB) # tr(A) - tr(B).

Linear independence, rank (Amemiya Ch. 11; Greene 20-3, 39) Vec-
tors {x;} linearly independent iff >~ , c;x; = 0 = Vi,
c; = 0.

1. The following are equivalent and called nonsingularity
of square A:
|A| # 0, A1 exists;

A is column independent or row independent;

Vy, 3x, Ax =Yy;
e Ax=0 — x=0.

2. Column rank (maximum number of linearly indepen-
dent columns) equals row rank, which implies rank A =
rank A’.

3. Ay, xm is full rank iff rank equals min(n,m); a square
matrix is full rank iff it is nonsingular.

4. rank(A) = rank(A’A) = rank(AA’); in particular,
Anxm with m < n (ie., “tall”) is full rank iff A’A
is nonsingular.

5. A is nonsingular = rank(AB) = rank(B).

6. rank(A,xn) equals the number of nonzero eigenvalues
(not necessarily distinct).

Eigen decomposition (Mathworld) For any square A with A a di-
agonal matrix containing eigenvalues of A, and P a matrix
whose columns are the eigenvectors of A (ordered as in A),
then A = PAP~ L.

Orthogonal decomposition (Amemiya Ch. 11; Greene 37-8) a.k.a.
spectral decomposition. For any symmetric A, FH;xn,
Ay xn such that A = HAH', where HH = I (ie., H is
orthogonal) and A is diagonal. Note that HAH = A.

This is just the eigen decomposition for a symmetric matrix;
here the matrix of eigenvectors is orthogonal.

Matrix squareroot (Greene 42) Given a positive definite symmet-
ric matrix A = HAH', we can get a (symmetric!) matrix
squareroot Al/2 = HAY/2H’, where Al/2 is the diagonal
matrix that takes the squareroot of diagonal elements of A.

Eigenvector, eigenvalue (Amemiya Ch. 11; Woodford 670-2) Note
some results may only hold for symmetric matrices (not made
explicit in Amemiya). Let the orthogonal decomposition of
symmetric A be A = HAH’, where H is orthogonal and A
is diagonal.

1. Diagonal elements of A = D(});) are eigenvalues (a.k.a.
characteristic roots) of A; columns of H are the corre-
sponding eigenvectors (a.k.a. characteristic vectors).



2. If h is the eigenvector corresponding to A, then Ah =
Ah and |A — AI| = 0. (This is an alternate definition
for eigenvectors/eigenvalues.)

3. Matrix operations f(A) can be reduced to the corre-
sponding scalar operation: f(A) = HDJ[f(\;)|H’.

4. rank(A,xn) equals the number of nonzero eigenvalues
(not necessarily distinct).

5. ApxmBmxn and BA have the same nonzero eigenval-
ues.

6. Symmetric A, x» and B, x» can be diagonalized by the
same orthogonal matrix H iff AB = BA.

7. |[Anxn| = [I; A (i-e., determinant is the product of
eigenvalues).

8. tr(Anxn) = >_; Ai (i.e., trace is the sum of eigenval-
ues).

9. A and A~! have same eigenvectors and inverse eigen-
values.

A 2 x 2 matrix A has two explosive eigenvalues (outside the
unit circle) iff either

e Case I:
|A| —trA > —1,
A < L
e Case II:

|A| +trA < —1,
[A] —tr A < -1,
|A] < 1 (trivially).

Positive definiteness, &c. (Amemiya Ch. 11; Greene 46-9) Symmet-

ric A is positive definite iff Vx # 0, x’ Ax > 0. Also written
A > 0; if A — B is positive definite, write A > B. If equal-
ity isn’t strict, A is positive semidefinite (a.k.a. nonnegative
definite). Negative definite and negative semidefinite (a.k.a.
nonpositive definite) similarly defined.

1. A symmetric matrix is positive definite iff its eigenval-
ues are all positive; similar for other (semi-)definiteness.

2. If A > 0, all diagonal elements are > 0 (consider a
quadratic form with a unit vector).

3. B’B > 0; if B has full column rank, then B'B > 0.

4. A >0 = A~! > 0 (i, the inverse of a positive
definite matrix is positive definite).

5. VB xk “tall” (i.e.,n > k), Apxn >0 = B’AB > 0.
If B is full rank (i.e., rank(B) = k), then A, x, >
0 — B’AB > 0.

6. For A,xn and Bpxn both positive definite, A >
B« B '>A"1andA>B < B~!>A"1

7.7A>0 = |A|>0and A >0 = |A| > 0—
note the natural analogues for negative (semi)definite
matrices do not hold.

Orthogonal completion (Hansen 5-24) For a “wide” matrix A,

(i.e., n < k) with full row rank (i.e., all rows are linearly inde-
pendent), we can construct a (non-unique) (k—n) X k matrix
A | such that:

1. The rows of A and A are linearly independent (i.e.,
I(A', A7 )] # 05

2. The rows of A are orthogonal to the rows of A (i.e.,
A A" =0p_pnxn, or identically, AA!, =0y xx—n)-

For a “tall” matrix B, xx (i.e., n > k) with full column rank
(i-e., all columns are linearly independent), we can construct
a (non-unique) n X (n — k) matrix B such that:

1. The columns of B and B are linearly independent (i.e.,
I(B,BL)| #0;

2. The columns of B, are orthogonal to the columns
of B (ie., B) B = 0,_gxk, or identically, BB, =
kanfk)

Idempotent matrix (Hansen 5-33-4; Amemiya 37; Hayashi 30-1, 36-7,

244-5) P is idempotent iff PP = P.

1. If P is idempotent, then so is I — P.

2. Every eigenvalue of a (symmetric?) idempotent matrix
is either O or 1.

3. A symmetric and idempotent matrix is positive semidef-
inite.

4. For any X, «k, we can find an idempotent projection
matrix (that projects onto the subspace of R™ spanned
by the columns of X): Px = X(X'X)~1X'.

5. For any X, x tall (i.e., n > k), we can find an idempo-
tent projection matrix (that projects onto the subspace
of R™ not spanned by columns of X): I - Px = Px .

6. rank(P) = tr(P) if P is idempotent.

Matrix derivatives (ving handout; Greene 51-53; MaCurdy) [Note

derivative convention may be transpose of MWG.]
s} —
1. gxAx = A,
. aixx’Ax =(A+ A')x.
o)

! — !
. a—AxAx—xx.

2
3
4. S log|Al= A1
5
6

9 __log|A]=—A.

©0A—1
o - 9 — o
 Bw log |A| = |A\ L. a5 Al = tr[A L. 55 Al (may re-
quire symmetric A?).
7. %A’l = —Afl[%A}Afl (may require symmetric

A?).

47

Partitioned matrices (Hayashi 670-673; Greene 32-3)

A A _
‘ {A; A;ﬂ = [Aze||An - A12A221A21|
= |A11] - |A22 — A21 AT Aqal;
Anin - AN [er] [, Atic;
Ayi -+ Ann] Lend > Anrics
Aq 1 er] [ Ajicy
Annl Lend LAr men
A11B1
AdiagBdiag = . . 5
AyvuBum
A&iagBAdiag
A} B11A Al BivAnmr
Al yBamiAL Al By A
Afﬁach
Al Biici +...+ A Biycy
Al uBaier + . 4+ Al Barvcas

-1
All
-1 _
Adiag -
-1
AI\/IM
The inverse of a 2 x 2 partitioned matrix is:

A At
Az Az
- [Aﬁl + A ARFAnALY —AARF,
~FaAn AL Fy ’

where Fo = (Ago — A21Af11A12)’1. The upper left block
can also be written as F1 = (A1 — A12A2_21A21)*1

Kronecker product (Hayashi 673; Greene 34-5) For Ajrxn and

Bkxr,
a11B alNB

A®B= '
aMlB GMNB

is MK x NL. Operation is not commutative.

1. (A®B)(C®D)= AC® BD (assuming matrix multi-
plications are conformable);



2. (A®B) =A'"®@B/; Deviation from means (Hansen 5-34-5; Greene 14-5) M, x is the is the symmetric idempotent matrix with 1 — % on diagonal,
3. (A@B)"l=A"1@B; vector of z; — X, and x'M,x = 3, (z; — X)?, where and —% off diagonal.*
4. tr(AMXM®BK><K) :tI‘(A) -tI‘(B);
5. |Apmxa @ Bexkl| = |AM - |B|X. M, =1— (/o) W =1— %LLI
5 References MaCurdy MaCurdy: Economics 272 notes
Mahajan Mahajan: Economics 270/271 notes
Amemiya Amemiya: Introduction to Econometrics and Statistics Manuel Amador: Economics 211 lectures
Bernheim Bernheim: Economics 203 notes Math camp  Fan: Math camp lectures
C&B Casella, Berger: Statistical Inference, 2 ed. MathWorld mathworld.wolfram.com
Choice Levin, Milgrom, Segal: Introduction to Choice Theory notes Max notes Floetotto: Economics 210 section
Clayton Featherstone: Economics 202 section notes Micro Math  Levin, Rangel: Useful Math for Microeconomists notes
Consumer Levin, Milgrom, Segal: Consumer Theory notes MWG Mas-Collell, Whinston, Green: Microeconomic Theory
D&M Davidson, MacKinnon: Estimation and Inference in Econometrics Nir Jaimovich: Economics 210 notes
G.E. Levin: General Equilibrium notes Producer Levin, Milgrom, Segal: Producer Theory notes
Greene Greene: Econometric Analysis, 3 ed. Taylor Taylor: Economics 212 notes
Hansen Hansen: Economics 270/271 notes Uncertainty  Levin: Choice Under Uncertainty notes
Hayashi Hayashi: Econometrics Wikipedia wikipedia.com
Jackson Jackson: Economics 204 lectures Woodford Woodford: Interest and Prices

*In Greene, M, is called MO,
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Index

T'(-) (Gamma function),
®(-) (standard normal cdf), [7]
as (skewness),

ay (kurtosis),

-0 discounting, [43|

x?2 distribution,

1 (expected value), |§|

tn (central moment),

uh (moment),lﬂ

¢(-) (characteristic function),

¢(+) (standard normal pdf),

p (correlation), m

o (standard deviation), [7]

o? (variance),

0-1 loss,

2SLS (Two-Stage Least Squares),
3SLS (Three-Stage Least Squares),

Absolute risk aversion,

Absolute value loss, [T4]

Action space, [T4]

Adding-up,

Additively separability with stationary discounting,
Adverse selection,

Aggregating consumer demand, @

AIIA (Arrow’s independence of irrelevant alternatives),
Almost sure convergence, [I0]

Alternate hypothesis,

Analogy principle,

Ancillary statistic,

Annihilator matrix,

Anonymity, @

AR(1) (autoregressive process of degree one),
AR(p) (autoregressive process of degree p),

ARCH (autoregressive conditional heteroscedastic) process,

ARMA process of degree (p, q),

Arrow’s independence of irrelevant alternatives, @
Arrow’s Theorem,

Arrow-Pratt coefficient of absolute risk aversion, @
Ascending price auction,

Associativity, []

Asymmetric, 5]

Asymptotic equivalence, [I0]

Asymptotic normality for GMM estimator,
Asymptotic normality for M-estimator,
Asymptotic normality for MD estimator,@
Asymptotic normality for MLE,

Asymptotic properties of OLS estimator, @
Asymptotic significance,

Asymptotic size, [T5]

Asymptotic variance,

Asymptotically efficient estimator, [[2]
Asymptotically normal estimator, @
Autocovariance, [I5]
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Autoregressive conditional heteroscedastic process,
Autoregressive process of degree p, m

Autoregressive process of degree one,
Autoregressive/moving average process of degree (p, q),
Axioms of Probability, @

B(-) (Beta function),
B! (Borel field), [4]

Banach fixed point theorem, [4]

Basic set theory, @

Basu’s theorem, [I]]

Bayes’ Rule, E|

Bayesian Nash equilibrium, [36]
Benveniste-Scheinkman Theorem, @

Bernoulli utility function,

Bertrand competition, @

Bertrand competition—horizontal differentiation,
Bertrand competition—non-spatial differentiation, [36]
Bertrand competition—uvertical differentiation,
Best linear predictor, [I§]

Best linear unbiased estimator, @

Best unbiased estimator,

Beta function, @

Biases affecting OLS,

Big O error notation, [L0

Bijective, [F]

Billingsley CLT, [T6]

Binary response model,

Binomial theorem,

Bivariate normal distribution,

Blackwell’s sufficient conditions for a contraction,
BLP (best linear predictor),

BLUE (best linear unbiased estimator),

BNE (Bayesian Nash equilibrium),
Bonferroni’s Inequality,

Boole’s Inequality, [25]

Borel field,

Borel Paradox,

Brouwer’s Fixed Point Theorem, @

Brownian motion, 24]

BS (Benveniste-Scheinkman Theorem),
Budget set,

BUE (best unbiased estimator),

Bulow-Rogoff defaultable debt model,

Cagan model, @

Cagan money demand,

CARA (constant absolute risk aversion),
Carrier axiom, [3§]

Cauchy sequence, []

Cauchy-Schwarz Inequality,

cdf (cumulative distribution function),
CE (correlated equilibrium),

Censored response model,



Central Limit Theorem for MA (c0), Continuous r.v., [

Central Limit Theorem for ergodic stationary mds, Contract curve, [33]

Central Limit Theorem for iid samples, m Contraction, @

Central Limit Theorem for niid samples, Contraction Mapping Theorem,
Central Limit Theorem for zero-mean ergodic stationary processes, Contraction on subsets,

Central moment, m Convergence almost surely,
Certain equivalent, Convergence in Ly, [T0]

Certain equivalent rate of return, [33] Convergence in distribution, [I0]
Characteristic function, [7] Convergence in mean square,
Characteristic root, [46] Convergence in probability, [
Characteristic vector, @ Convergence in quadratic mean,

Chebychev’s Inequality, [25]

Chi squared distribution,

Choice rule,

CLT (Central Limit Theorem) for MA (c0),

CLT (Central Limit Theorem) for ergodic stationary mds,

)
)
CLT (Central Limit Theorem) for iid samples,
CLT (Central Limit Theorem) for niid samples,

CLT (Central Limit Theorem) for zero-mean ergodic stationary processes,

CMT (Contraction Mapping Theorem)
Cobb-Douglas production function,
Coefficient of absolute risk aversion,
Coefficient of relative risk aversion, [33|
Commutativity, [

Compensated demand correspondence, @
Compensating variation,

Competitive producer behavior,
Complement goods,

Complement inputs,

CMT (Continuous Mapping Theorem),
b m

Convergent sequence, [41]
Convex function,
Convex game, [38]

Convex preference, @
Convex set, [F]

Convexity, 28]
Convolution formulae, |§|
Core, [37]

Core convergence, [37]
Correlated equilibrium,
Correlation, m
Correspondence, @l

Cost function, 29

Cost minimization,
Cost of business cycles, [43]
Counting,

Cournot competition, [36]
Covariance, m

Covariance stationarity, E

Complete, [45] Cramér-Rao Inequality, [I4]

Complete information, Cramér-Wold Device,

Complete metric space, [41] Critical region, [I4]

Complete statistic, CRLB (Cramér-Rao lower bound),
Completeness, [27] CRRA (coeflicient of relative risk aversion),

Conditional expectation, |§|
Conditional factor demand correspondence,
Conditional homoscedasticity, m

CRRA (constant relative risk aversion),
CRRA (constant relative risk aversion) utility function,
CRS (constant returns to scale),

Conditional pdf, CS (Marshallian consumer surplus),
Conditional pmf, [f] Cumulant generating function, [7]
Conditional probability, Cumulative distribution function,
Conditional variance, []] CV (compensating variation),

Condorcet winner,

Condorcet-consistent rule, DARA (decreasing absolute risk aversion),

Consistency for for MLE, Decision rule, @

Consistency for GMM estimators, Defaultable debt,
Consistency with compact parameter space, @ Deferred acceptance algorithm, @
Consistency without compact parameter space, Delta Method,

Consistent estimator, [T]] Demand for insurance, [33]
Consistent strategy, DeMorgan’s Laws, @

Consistent test, [[5] Derivative of power series, [45]
Constant relative risk aversion utility function, @ Descending price auction, @
Constant returns to scale, Determinant, [46]

Consumer welfare: price changes, @ Deviation from means, @
Continuous function, Diagonal matrix,

Continuous Mapping Theorem, [9] [I0] Dickey-Fuller Test, [24]
Continuous preference, Difference-stationary process,
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Direct revelation mechanism, [34]

Discrete r.v., [f]

Disjointness, [4]

Distance function principle,

Distributive laws, [4]

Dixit-Stiglitz aggregator,

Dobb’s Convergence Theorem,

Dominant strategy, @

Dominated strategy,

Donsker’s Invariance Principle, [24]
Dornbush model, @

DRRA (decreasing relative risk aversion),
Dummy axiom, @

Durbin-Wu-Hausman test,

Dutch auction, @

DWH (Durbin-Wu-Hausman) test,
Dynamic programming: bounded returns, [2]
Dynamic systems, [I]

Dynamic systems in continuous time, @

Edgeworth box, [33]
Efficient GMM, @ @

EFTHPNE (Extensive form trembling hand perfect equilibrium),

Eigen decomposition, @

Eigenvalue,

Eigenvector, [46]

Eigenvector, eigenvalue, @

Elasticity, [44]

Elasticity of intertemporal substitution,
EMP (expenditure minimization problem),
Empirical distribution, E

Endowment economy, Arrow-Debreu,
Endowment economy, sequential markets,
Engle curve,

English auction, [37]

Entry deterrence,

Envelope theorem,

Envelope theorem (integral form),
Equilibrium dominance,

Equivalence relation, [45]

Equivalent variation,

Ergodic stationary martingale differences CLT, m
Ergodic Theorem,

Ergodicity, [T6]

Estimating AR(p),

Estimating S, [I§]

Estimating number of lags, E

Estimator, [TT]

Euclidean norm, [1]

Euler’s law, @

EV (equivalent variation),

Excess demand, @

Expected utility function,

Expected value, mean,

Expenditure function,

Expenditure minimization problem, @
Exponential families,
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Extensive form trembling hand perfection, [36]
Extremum estimator, [I1]

F distribution,

F test, [T9]

Factorial moment generating function, m
Factorization theorem,

FCLT (Function Central Limit Theorem),
Feasible allocation,

Feasible generalized least squares, E

Feasible payoff,

FGLS (Feasible Generalized Least Squares),
FIML (Full Information Maximum Likelihood),
Finitely repeated game,

First Welfare Theorem, @

First-order ancillary statistic,

First-order stochastic dominance, @

First-price sealed bid auction,

Fisher Information, [I0} [14]

Fisher Information Equality,

Fitted value, [I§]

FIVE (Full-Information Instrumental Variables Efficient),
Folk Theorem,

Free disposal, @

Frisch-Waugh Theorem,

Full Information Maximum Likelihood, @
Full-Information Instrumental Variables Efficient,
Function, [45]

Function Central Limit Theorem, @

FWL (Frisch-Waugh-Lovell) Theorem,

Gale-Shapley algorithm,

Game tree, @

Gamma function,

GARCH process, [I7]

GARP (Generalized Axiom of Revealed Preference),
Gauss-Markov theorem, [T

Gaussian distribution, m

Gaussian regression model,

General equilibrium, [40]

Generalized Axiom of Revealed Preference,
Generalized least squares, [T9]

Generalized Method of Moments estimator,
Generalized Tobit model, 25]

Geometric series,

Gibbard-Satterthwaite Theorem,

Giffen good, @

GLS (Generalized Least Squares),

GMM (Generalized Method of Moments), [13]
GMM hypothesis testing,

Gordin’s CLT, [16]

Gordin’s condition,

Gorman form, [32]

Granger causality, @

“Grim trigger” strategy,

Gross complement,

Gross substitute,



Gross substitutes property, [34]

Groves mechanism,

GS (Gale-Shapley) algorithm,

GS (Gibbard-Satterthwaite) Theorem,

Holder’s Inequality,

Hall’s martingale hypothesis,

Hamiltonian, @

Hansen’s test of overidentifying restrictions,

HARP (Houthaker’s Axiom of Revealed Preferences),

Hausman Principle,
Heckman two-step, [25]
Herfindahl-Hirshman index,

Heteroscedasticity robust asymptotic variance matrix,

Heteroscedasticity-robust standard error, @
Hicksian demand correspondence,
Holmstrom’s Lemma, m

Homothetic preference,

Hotelling spatial location model, [36]

Hotelling’s Lemma,

Houthaker’s Axiom of Revealed Preferences, @
Hyperbolic discounting, @

Hypothesis testing,

I(0) process, [24]
I(1) process, [24
I(d) process,
ID (increasing differences),

Ideal index,

Idempotent matrix, [£7]

Identification,

Identification in exponential families,

IEoS (intertemporal elasticity of substitution), @I
Imperfect competition model, @

Imperfect competition: final goods, [40]

Imperfect competition: intermediate goods, @
Imperfect information, @

Implicit function theorem, 30}

Inada conditions,

Income expansion curve, @

Incomplete information,

Incomplete markets, [34]

Incomplete markets: finite horizon,
Incomplete markets: infinite horizon, 3]
Increasing differences,

Independence of events, [4]

Independence of r.v.s, El

Independence of random vectors,

Independent, E[, E]

Indirect utility function,

Individually rational payoff, [37]

Inferior good,

Infimum limit, (5]

Infinitely repeated game, @

Information Equality,

Injective, @

Inner bound,
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Instrumental variables estimator, [20]
Integrated process of order d,
Integrated process of order 0, [24]
Intereuler equation, @

Interpersonal comparison,
Intertemporal elasticity of substitution, @
Intertemporal Euler equation,
Irreflexive, @

Iterated deletion of dominated strategies,
Iterated expectations, [6]

IV (instrumental variables) estimator,

J statistic, [20]

Jacobian, [6]

Jensen’s Inequality,

JGLS (Joint Generalized Least Squares),
Join, [{4]

Joint cdf, [5]

Joint Generalized Least Squares, @

Joint pdf,

Joint pmf, E]

Kakutani’s Fixed Point Theorem, @

Kocherlakota two-sided lack of commitment model, @
Kolmogorov Axioms or Axioms of Probability, E|
Kronecker product, 7]

Kuhn’s Theorem, @

Kullback-Liebler Divergence,

Kurtosis, m

Lag operator,

Lagrange multiplier statistic,
Landau symbols, E
Laspeyres index,

Law of Iterated Expectations, |§|

Law of Large Numbers for covariance-stationary processes with vanishing autocovariances,
Law of Large Numbers for ergodic processes (Ergodic Theorem),

Law of Large Numbers for iid samples, EI,
Law of Large Numbers for niid samples, [10]
Law of Supply, @

LeChatelier principle,

Lehmann-Scheffé Theorem, E

Lerner index,

Level, [T4]

Lexicographic preferences,

lhc (lower hemi-continuity),

Likelihood function,

Likelihood ratio test,

lim inf, @

lim sup,

Limited Information Maximum Likelihood, @
Limiting size, [T5]

LIML (Limited Information Maximum Likelihood),
Lindeberg-Levy CLT,

Linear GMM estimator, [20]

Linear GMM model, E

Linear independence, rank, @l



Linear instrumental variables, [T]]
Linear multiple-equation GMM estimator,
Linear multiple-equation GMM model, [21]

Linear regression model with non-stochastic covariates,

Linearization in continuous time, 2]
Little o error notation, |§_;|

LLN (Law of Large Numbers) for covariance-stationary processes with vanishing autocovariances,

LLN (Law of Large Numbers) for ergodic processes (Ergodic Theorem),

LLN (Law of Large Numbers) for iid samples, |§|
Local level model,

Locally non-satiated preference, 28|

Location and Scale families,
Log-linearization,

Logistic function, @

Logit model,

Lognormal distribution,

Long-run variance, [I6]

Loss function, [T4] 29|

Lottery, [32]
Lower hemi-continuity, [6]

Lower semi-continuity, @

Isc (lower semi-continuity),
Lucas cost of busines cycles, [43
Lucas supply function, @
Lucas tree, [42]

Lyapounov’s Theorem,

M-estimator, [I2]

MA (moving average) process,

Maintained hypothesis, E

Marginal pdf,

Marginal pmf, E]

Marginal rate of substitution,

Marginal rate of technological substitution, [2§]
Marginal rate of transformation,

Marginal utility of wealth,

Markov process, @

Markov’s Inequality,

Marshallian consumer surplus, @

Marshallian demand correspondence,
Martingale, [I6]

Martingale difference sequence,

Matrix, [46]

Matrix derivatives, @

Matrix inverse, [46]

Matrix multiplication, @

Matrix squareroot, 6]

Matrix transpose,

Maximum Likelihood estimator,

Maximum likelihood estimator for OLS model, [I§|
Maximum likelihood for SUR,

Maximum likelihood with serial correlation,
May’s Theorem, @

MCS (monotone comparative statics),
MCS: robustness to objective function perturbation, [30]
mds (martingale difference sequence),

53

Mean independence, [5]

Mean squared error risk function,

Mean value expansion, 5]

Measurability,

Median, [§]

Meet, @

Method of Moments estimator,

Metric space, @

mgf (moment generating function),
Milgrom-Shannon,

Milgrom-Shannon Monotonicity Theorem,
Minimal sufficient statistic, [I1]

Minimum Distance estimator, @

Minkowski’s Inequality,

Mixed strategy Nash equilibrium, @

MLE (Maximum Likelihood estimator),
MLR (monotone likelihood ratio),

Mode, |§|

Moment, [7]

Moment generating function, m

Monopolistic competition,

Monopoly pricing, @

Monotone, [45]

Monotone comparative statics, m

Monotone likelihood ratio models,
Monotone preference, 28]

Monotone Selection Theorem,

Monotonicity, [39)

Moral hazard, @

Moving average process, [I6]

MRS (marginal rate of substitution),

MRT (marginal rate of transformation),
MRTS (marginal rate of technological substitution),
MSE (mean squared error),

MSNE (mixed strategy Nash equilibrium),
Multiple equation 2SLS (Two-Stage Least Squares),
Multiple equation TSLS (Two-Stage Least Squares),
Multiple equation Two-Stage Least Squares, @
Multiple-equation GMM with common coefficients,
Multivariate covariance, [7]

Multivariate normal distribution,
Multivariate regression, 22]

Multivariate variance, m

Mutual exclusivity,

Mutual independence of events, F_I|

Nash reversion, @

Natural parameter space,

NCGM (neoclassical growth model),
NCGM in continuous time, 2]
Negative transitive, [5]

Neoclassical growth model (discrete time),
Neutrality,

Neyman-Pearson Lemma, E

NLS (nonlinear least squares),

No Ponzi condition, @

Nondecreasing returns to scale,



Nonincreasing returns to scale, 28]
Nonlinear least squares,
Nonsingularity, 6]

Nontransferable utility game,
Normal distribution, [7]

Normal equations,

Normal form,

Normal good, @

Normative representative consumer, @
Normed vector space, [4]]

NPL (Neyman-Pearson Lemma),
NTU (nontransferable utility) game,
Null hypothesis, E

Numerical inequality lemma,

O error notation, [I0]

o error notation,

Observational equivalence,
Offer curve, 2] [33]

Okun’s Law, @

OLG (overlapping generations),
OLS F test,

OLS RZ2,

OLS ¢ test, [T§]

OLS (ordinary least squares),
OLS residual, [T§]

OLS robust ¢ test,

OLS robust Wald statistic, [T9]
One-sided lack of commitment, @
One-sided matching,
One-to-one, @

Onto, [45]

Optimal taxation—primal approach,
Order statistic, |§|

Order symbols, [I0]

Ordinary least squares estimators,
Ordinary least squares model,
Orthants of Euclidean space, @
Orthogonal completion, @
Orthogonal decomposition, [£6]
Orthogonal matrix,

Other generating functions, [7]
Outer bound,

Overlapping generations,
Overtaking criterion, @

p-value,

Paasche index,

Parameter, m

Parametric model,

Pareto optimality, [33]

Pareto set,

Partition, [4] [45]

Partitioned matrices, @

Payoff function,

PBE (perfect Bayesian equilibrium),
pdf (probability density function),
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PE (Pareto efficiency),

Perfect Bayesian equilibrium,
Perfect information, [34]

Perfect recall,

Philips Curve,

Pivotal mechanism, @

pmf (probability mass function),

PO (Pareto optimality),

Point identification,

Pooled OLS, 23

Portfolio problem,

Positive definiteness, &c., [d7]

Positive representative consumer, @
Power, [T4]

Power series, @

Preference axioms under uncertainty,
Price expansion path, [32]

Price index,

Primal approach to optimal taxation, 40
Principle of Optimality,

Probability density function,
Probability function,

Probability integral transformation, El
Probability mass function, [5]
Probability space,
Probability-generating function, [7]
Probit model,

Producer Surplus Formula,
Production economy, Arrow-Debreu, @
Production economy, sequential markets, @
Production function, 28]

Production plan,

Production set, 28]

Profit maximization,

Projection matrix, [T8]

Proper subgame,

“The Property”,

Proportionate gamble, @

PSF (Producer Surplus Formula),
PSNE (pure strategy Nash equilibrium),
Public good,

Pure strategy Nash equilibrium, [35]

Quadrants of Euclidean space, [44]
Quadratic loss,

Quasi-linear preferences,

R2,

Ramsey equilibrium, [41]
Ramsey model,

Random effects estimator, 23]
Random sample, iid, |§|
Random variable, [f]

Random vector,

Random walk,

Rank, @

Rao-Blackwell Theorem,



Rational expectations equilibrium, [34]
Rational expectations models, @
Rational preference relation, [27]
Rationalizable strategy,
Rationalization: h and differentiable e,
Rationalization: y(-) and differentiable 7(-),
Rationalization: differentiable m(-),
Rationalization: differentiable e, [31]
Rationalization: differentiable h,
Rationalization: differentiable x, [3]]
Rationalization: differentiable y(
Rationalization: general y(-) and =(-),
Rationalization: profit maximization functions, @
Rationalization: single-output cost function,
RBC (Real Business Cycles) model, @I
RE (random effects) estimator,

Real Business Cycles model, [40]

Reduced form,

REE (rational expectations equilibrium),
Reflexive,

Regression, [6]

Regression model, E

Regular good,

Relating Marshallian and Hicksian demand, @
Relative risk aversion,

Revealed preference, [27]

Revelation principle,

Revenue equivalence theorem,

Risk aversion, @

Risk function,

Risk-free bond pricing, 2]

Robust standard error,

Robust ¢ test, [I9]

Robust Wald statistic,

Roy’s identity, [32]

RRA (relative risk aversion),

rxy (sample correlation), El

52 (sample variance), El

Sample correlation, [9]

Sample covariance,

Sample mean, 9]

Sample median, |§|

Sample selection model, @

Sample standard deviation, |§|

Sample variance, [J]

Samples from the normal distribution,
Sampling error,
Samuelson-LeChatelier principle, [30]
Scedastic function, m

Score, [14]

Screening,

SE (sequential equilibrium),

Second Welfare Theorem, [34]
Second-order stochastic dominance,
Second-price auction, [37]

SEE (standard error of the equation),
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Seemingly Unrelated Regressions, [TT} [22]
Separable preferences,

Sequential competition, [36]

Sequential equilibrium,
Sequentially rational strategy,

SER (standard error of the regression),
Shadow price of wealth,

Shapley value, @

Shephard’s Lemma,

Short and long regressions, [I9]
Shutdown,

SID (strictly increasing differences),
Sigma algebra, @

Signaling,

Simple game, @

Simple likelihood ratio statistic,
Single-crossing condition, [30]
Single-output case,

Singularity, [46]

Size,

Skewness, [7]

Slutsky equation, @

Slutsky matrix,

Slutsky’s Theorem, [I0]

SM (supermodularity),

Smallest o-field, [f]

Snedecor’s F' distribution,
Sonnenschein-Mantel-Debreu Theorem,
Spectral decomposition, @

Spence signaling model,

SPNE (subgame perfect Nash equilibrium),
Square matrix, 6]

SSO (strong set order),

Stable distribution,

Stage game, [37]

Standard deviation, m

Standard error,

Standard error of the regression, @
“Stars and bars”, {4

Stationarity, [T5]

Statistic, [J]

Statistics in exponential families, [IT]
Stein’s Lemma, m

Stick-and-carrot equilibrium,
Stochastic ordering, E]

Stock pricing,

Strategy, @

Strict dominance,

Strict stationarity, [15]

Strictly increasing differences,
Strictly mixed strategy, [35]

Strong Law of Large Numbers, E
Strong set order, [44]

Strongly increasing differences, [30]
Structural form,

Student’s t distribution,

Subgame perfect Nash equilibrium,



Subjective probabilities, [33]
Sublattice, @

Submodularity, [30]

Substitute goods,
Substitute inputs,
Substitution matrix, @
Sufficient statistic,

Sum of powers, @

Sup norm, (1]
Superconsistent estimator, [IT]
Supergame,
Supermodularity, [30]

Support,

Support set, [f

Supremum limit, @
Supremum norm (R™),
Supremum norm (real-valued functions), [41}
SUR (seemingly unrelated regressions), |11}
Sure thing principle, [32]
Surjective,

sxy (sample covariance), EI
Symmetric, @

Symmetric distribution, |§|
Symmetric matrix, [26]
System of beliefs,

t distribution,

t test, [I§]

Taylor Rule, @

Taylor series,

Taylor series examples, @

Test function,

Test statistic, [I4]

Testing overidentifying restrictions,

THPE (trembling-hand perfect equilibrium),

Three-Stage Least Squares,
Threshold crossing model,
Time inconsistency, @

Tobit model,

Top Trading Cycles algorithm, @
Topkis’ Theorem,

Trace, [46]

Transferable utility game,
Transformation R! — R, [6
Transformation R? — R2, [6
Transformation frontier,
Transformation function, @
Transitive, [45]

Transitivity, @

Transpose, [46]

Transversality condition, [
Trembling-hand perfection,
Truncated response model,
TSLS (Three-Stage Least Squares),
TSLS (Two-Stage Least Squares),
TU (transferable utility) game, [38
TVC (transversality condition), [41]
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Two period intertemporal choice model, @
Two-sided lack of commitment,
Two-sided matching,

Two-Stage Least Squares,

Two-way rule for expectations, [6]

Type I/Type II error,

uhc (upper hemi-continuity), @
ULLN (Uniform Law of Large Numbers),

UMP (uniformly most powerful) test, [14]
UMP (utility maximization problem),

UMPU (uniformly most powerful unbiased) test,
UMVUE (uniformly minimum variance unbiased estimator),

Unanimity, @

Unbiased estimator, |§|

Unbiased test, [T5]

Uncertainty: general setup,
Uncompensated demand correspondence, [31]
Uniform (Weak) Law of Large Numbers, g
Uniform convergence in probability, [J]

Uniformly minimum variance unbiased estimator, @

Uniformly most powerful test,
Uniformly most powerful unbiased test, [I5]
Unimodality, |§|

Unit root process, 24]

Upper hemi-continuity, @

Upper semi-continuity, [46]

usc (upper semi-continuity),

Utility function,

Utility maximization problem, @

Variance, [7]

Variance of residuals,

VCG (Vickrey-Clarke-Groves) mechanism,
Veto player,

Vickrey auction, @

Vickrey-Clarke-Groves mechanism,

von Neumann-Morgenstern utility function, [32]
Voting rule,

‘Wald statistic,

Walras’ Law, E

Walrasian demand correspondence,
Walrasian equilibrium, [33]

Walrasian model,

WAPM (Weak Axiom of Profit Maximization),
WARP (Weak Axiom of Revealed Preference),

WE (Walrasian equilibrium),

Weak Axiom of Profit Maximization,
Weak Axiom of Revealed Preference,
Weak dominance, [35]

Weak Law of Large Numbers, El

Weak perfect Bayesian equilibrium, [36]
Weak stationarity,

Weakly dominated strategy,

Weakly increasing differences,

Weighted least squares,



White noise, [I6]

White’s standard error,

WID (weakly increasing differences),
Wiener process,

WLS (Weighted Least Squares),

WPBE (weak perfect Bayesian equilibrium),

X (sample mean), EI

Zermelo’s Theorem, [35]
0-1 loss,
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